Marine Top Predators as Climate and Ecosystem Sentinels published in Frontiers in Ecology and the Environment

A recent review from our group at ERD highlights the ability for highly mobile predators to serve a role as ecosystem sentinels, by integrating the ocean processes around them, and telling us something we would not otherwise know about the oceanic ecosystems. In an ideal world, we’d have fine scale measurements of the ecosystem components and thresholds that result in change, but top predators respond in multiple scales, from changes in breeding success, movement patterns, to diet analyses we can understand more about ocean ecosystems and when changes are likely to occur. We hope this manuscript will both further the discussion of the roles of top predators in the global ocean observing system, but also as sentinels for rapid response, when ecosystem changes are likely to occur, and when adaptive management will be most needed.

E.L. Hazen, B. Abrahms, S. Brodie, G. Carroll, M. Jacox, M.S. Savoca, K.L. Scales, W.J. Sydeman, and S.J. Bograd, 2019Marine Top Predators as Climate and Ecosystem Sentinels. Frontiers in Ecology and the Environment. DOI: 10.1002/fee.2125 PDF

Climate variability and change can result in ecosystem response via trophic pathways. Trophic linkages (gray and colored arrows) are represented in a generic pelagic food web. Solid colored lines represent a direct relationship between a sentinel via the metric measured and an ecosystem component; dashed colored lines represent the capacity of an organism to function as a leading sentinel, which can be used to predict a future ecosystem response; and dotted colored arrows represent the ecosystem link that is heralded by a leading sentinel.

Continue reading

New publication in Conservation Biology by Heather Welch on validating decision support tools

A new paper by Heather Welch titled “Decision support tools for dynamic management” in Conservation Biology highlights the role of decision support tools when integrating multiple species distribution models into a management tool. For example, the question being asked is critically important in the tool design. The algebraic formulation for EcoCast, is highly relative and scales geometrically while Marxan can have exponential relationships because of the algorithm used to ensure a certain percentage of habitat is ultimately protected. It is another good example of where there is no one size fits all approach towards tool building for multiple management goals.

Figure 3. Effect of changing management priorities for leatherback turtles and swordfish on EcoCast (top row) and Marxan (bottom row) tool outputs relative to species habitat suitability. Curves show generalized additive models fit to each weighting run.

Continue reading

New publication from Dr. Steph Brodie on “Trade-offs in covariate selection for species distribution models: a methodological comparison” in Ecography

Dr. Brodie’s new paper reveals trade-offs in species distribution modeling between accurately estimating species abundance, spatial patterns, and underlying species~environment relationships. The short answer, is there is no one best tool and choosing the right tool depends on your modeling goals. I still refer frequently to Elith et al. 2006 as a good lesson on which models are best reproducing spatial patterning, but Steph’s paper highlights that pattern is only part of the process, particularly when modeling for fisheries management.

Continue reading

New publication on “Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species” by Dr. Briana Abrahms in Diversity and Distributions

With the advent of WhaleWatch, we knew that monthly predictions and 0.25° were too coarse to inform fine scale management decisions yet that was the best we could do with the environmental data we had available. In two short years, we have now updated the model to an ensemble of multiple modeling approaches, and moved from predictions using satellite data to higher resolution ocean model output (daily and 0.10 °). Briana also used a thorough dataset of independent data to check the model’s accuracy and found very good performance, particularly during the peak of whale migration. Improving and assessing the accuracy of operational tools is a necessity, but one that we would not have been able to accomplish without support from the Benioff Ocean Initiative.

B. Abrahms, H. Welch, S. Brodie, M.G. Jacox, E.A. Becker, S.J. Bograd, L.M. Irvine, D.M. Palacios, B.R. Mate, and E.L. Hazen, 2019. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Diversity and Distributions. PDF

Continue reading

New publication by Dr. Sara Maxwell on “Seasonal spatial segregation in blue sharks (Prionace glauca) by sex and size class in the Northeast Pacific Ocean”

The question of habitat use varies significantly when separating individuals based on sex and size. Blue sharks use significantly different habitat, particularly in the fall based on their sex and size highlighting the importance of considering multiple life history stages, or at least the most vulnerable, in management.

S.M. Maxwell, K.L. Scales, S.J. Bograd, D.K. Briscoe, H. Dewar, E.L. Hazen, R.L. Lewison, H. Welch, and L.B. Crowder, 2019. Oceanographic drivers of spatial segregation in blue sharks by sex and size class. Diversity and Distributions. PDF

Continue reading

Climate resiliency in fisheries management in ICES J of Marine Science

Following on The effects of climate change on the world’s oceans conference, Kirstin Holsman led an effort to discuss the role of old and new, tried and true, dynamic and static in fisheries management. Given how ecological response often varies based on the scale of species-environment interactions and even our scale of measurement, alignment between data and management can be misaligned. The paper uses the Bering Sea as one of the case studies to explore the advantages of dynamic vs. adaptive vs. fixed approaches in managing variable ocean resources. Read more in the recent NOAA Fisheries article here!

K.K. Holsman, E.L. Hazen, A. Haynie, S. Gourguet, A. Hollowed, S.J. Bograd, J. Samhouri, and K. Aydin, 2019. Toward climate resiliency in fisheries management. ICES J Marine Science,doi:10.1093/icesjms/fsz031 PDF

Continue reading

New research in TREE “Translating Marine Animal Tracking Data into Conservation Policy and Management”

Tracking data are collected around the world, but the data often end up in repositories or are summarized in an academic publication without translation to management or conservation opportunities. Recently, tracking data are becoming more and more relevant for management and conservation, and Hays and colleagues summarized some of the species and ocean ecosystems where concrete examples are available.

Figure 1

Continue reading

New publication in Science Advances led by Tim White at Stanford

By combining species distribution models from Hazen et al. 2013 with Global Fishing Watch data from Kroodsma et al. 2018, White et al. assesses overlap between tunas and sharks and Pacific fishing vessels. In addition, the manuscript assesses which species occur within North American Exclusive Economic Zones versus the open ocean requiring different approaches towards management.

There has been a good discussion on how scale effects overlap calculations for GFW data as well by Amaroso et al. and in the Kroodsma et al. response finding that “fished area” could be between 4% and 55% depending on the scale of calculation. Both articles provide a valid rationale for why their scale was chosen. The work here was conducted on a coarse spatial scale, so it is highly likely that overlap would decrease if finer resolution data were available, yet this scale is appropriate for the ecosystem footprint of much of the gear and the top predator models as well.

Figure 1

Many species of sharks and tunas are threatened by overexploitation, yet the degree of overlap between industrial fisheries and pelagic fishes remains poorly understood. Using  satellite tracks from 1,007 industrial fishing vessels in conjunction with predictive habitat models built using 2,406 electronic tags deployed on seven pelagic shark and tuna species, we developed fishing effort maps by gear type across the Northeast Pacific Ocean and assessed overlap with core habitats of pelagic fishes. We found that up to 35% of species’ core habitats overlapped with industrial fishing effort and identified overlap hotspots along the North American continental shelf, the equatorial Pacific, and Mexico’s Exclusive Economic Zone. Our results indicate which species require international, high seas conservation efforts for effective management (e.g., 90% of blue shark overlap and 48% of albacore tuna overlap occurs in international waters) and which may be effectively managed by single nations (e.g., 75% of salmon shark overlap occurs in U.S. waters). Vessels flagged to just 5 nations (Mexico, China, Taiwan, Japan, and the U.S.) account for the vast majority (> 95%) of overlap with core habitats of our focal sharks and tunas on the high seas. These results may inform ongoing, global negotiations over national fishing rights and conservation priorities to achieve sustainability on the high seas.

T.D. White, F. Ferretti, D.A. Kroodsma, E.L. Hazen, A.B. Carlisle, K.L. Scales, S.J. Bograd, B.A. Block, 2018. Predicted hotspots of overlap between highly migratory fishes and industrial fishing fleets in the Northeast Pacific. Science Advances. PDF

Abrahms et al. publish in PNAS on Memory and resource tracking drive blue whale migrations

Blue whales are the largest animals to every exist on earth but feed on some of the smallest animals on earth, so they need to eat a huge amount of krill to meet their energy needs. Blue whales are estimated to eat 8,000 pounds of krill per day! So it’s important they’re able to find enough food as they’re migrating up the coast of North America. Rather than surfing the contemporaneous “green wave,” the whales can hedge their bets by going with the average timing they’ve experienced in the past. This suggests memory or social communication over basin scales may be at play. From a commentary by William Fagan, “The ultimate analysis and results underpinning conclusions about memory-driven movement in whales are deceptively simple, but the data-intensive process to get there underscores just how much integration is necessary to make progress in cognitive movement ecology.”

B. Abrahms, E.L. Hazen, E.O. Aikens, M.S. Savoca, J.A. Goldbogen, S.J. Bograd, M. Jacox, L. M. Irvine, D.M. Palacios, B.R. Mate, 2019. Memory and resource tracking drive blue
whale migrations. Proceedings of the National Academy of Sciences, 10.1073/pnas.1819031116. PDF


Continue reading

New publication titled “Practical considerations for operationalizing dynamic management tools” by Heather Welch

When building an operational tool, building the ecological models is only part of the equation. Equally important is ensuring that we have operational tools and regular predictions for use in management. Welch et al. 2018 explore the operational-side of the EcoCast tool, including potential pitfalls and solutions towards decision making. The paper came out in early view in the Journal of Applied Ecology and there is a discussion on the steps involved in creating fisheries nowcasts in the Conversation.

Figure 1. The four stages of operationalizing a dynamic management tool (hollow fill) and internal components (grey fill). The framework is relevant to operationalizing tools at one point in time and does not encompass tool updates as new data become available.

Continue reading