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Introduction: Understanding how abundance, productivity and distribution of

individual species may respond to climate change is a critical first step towards

anticipating alterations in marine ecosystem structure and function, as well as

developing strategies to adapt to the full range of potential changes.
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Methods: This study applies the NOAA (National Oceanic and Atmospheric

Administration) Fisheries Climate Vulnerability Assessment method to 64 federally-

managed species in the California Current Large Marine Ecosystem to assess their

vulnerability toclimatechange,where vulnerability is a functionof a species’exposure

to environmental change and its biological sensitivity to a set of environmental

conditions, which includes components of its resiliency and adaptive capacity to

respond to these new conditions.

Results: Overall, two-thirds of the species were judged to have Moderate or greater

vulnerability toclimatechange,andonlyonespecieswasanticipatedtohaveapositive

response. Species classified as Highly or Very Highly vulnerable share one or more

characteristics including: 1) having complex life histories that utilize a wide range of

freshwater andmarine habitats; 2) having habitat specialization, particularly for areas

that are likely to experience increased hypoxia; 3) having long lifespans and low

population growth rates; and/or 4) being of high commercial value combined with

impacts from non-climate stressors such as anthropogenic habitat degradation.

Species with Low or Moderate vulnerability are either habitat generalists, occupy

deep-water habitats or are highly mobile and likely to shift their ranges.

Discussion: As climate-related changes intensify, this work provides key information

for both scientists and managers as they address the long-term sustainability of

fisheries in the region. This information can inform near-term advice for prioritizing

species-level data collection and research on climate impacts, help managers to

determinewhen andwhere a precautionary approachmight bewarranted, in harvest

or other management decisions, and help identify habitats or life history stages that

might be especially effective to protect or restore.
KEYWORDS

climate vulnerability assessment, marine fishes, fisheries management, climate change,
exposure, sensitivity, trait-based vulnerability, California Current
1 Introduction

Physical changes in the world’s oceans, driven by increasing carbon

dioxide in the atmosphere, are already causing changes in the

distribution and abundance of marine species (Poloczanska et al.,

2016; Thorson et al., 2016; Pinsky et al., 2020a; Pinsky et al., 2020b).

Globally, centers of distribution for fish species are expected to shift on

average approximately 30 to 59 km per decade (Cheung et al., 2009;

Poloczanska et al., 2013), assuming fish are able to track changing

conditions. Although it is difficult to attribute species’ movements

solely to changes in temperature, half of fish species in the North Sea

with defined range limits have already shifted their range boundary with

warming, and all but one of those shifts have been poleward (Perry et al.,

2005). Likewise, many groundfish species throughout North American

waters have changed their distributions in recent decades (Pinsky et al.,

2013; Thorson et al., 2016). For example, in the Bering Sea, range

extensions up to 98 km/decade have been observed for demersal fish

and invertebrates (Poloczanska et al., 2016).

In addition to range shifts, increasing temperatures, pH, and

other physical changes in the ocean are likely to lead to changes in

productivity, mortality, or other vital rates that will impact abundance

and biomass. In fact, abundance and biomass changes attributed to

climate change have already been observed from phytoplankton and

fish to marine mammals, sharks, and seabirds (Doney et al., 2012;

Poloczanska et al., 2016). For example, primary productivity has
02
increased in high latitudes and decreased in low/mid latitudes due to

changes in nutrient supply attributable to sea ice changes, warming,

and enhanced stratification (IPCC, 2019). At higher trophic levels, a

decline in the weight-at-age of North Atlantic Cod (Gadus morhua)

stocks was correlated with an increase in temperature from 1980 to

1992; this reduction resulted in lower reproductive output and a

subsequent biomass decline in the species (Brander, 2010). Marine

systems are in the midst of substantive, multi-faceted restructuring

across trophic levels, which may have broad-scale impacts on

ecological communities and the fisheries dependent upon them.

Understanding how different species may respond to climate

change in terms of abundance, productivity or distribution is a

critical first step towards anticipating changes in marine ecosystem

structure and function, as well as developing strategies to adapt to the

full range of potential changes. Assessments of the benefits of

incorporating climate change into ocean planning have shown this

step substantially reduces societal risk (Pinsky et al., 2020a). Climate

Vulnerability Assessment (CVA) is a tool to assess whether and how a

species or group of species will respond to climate change.

The vulnerability of a species is a function of its exposure to

relevant changes in the environment, its biological sensitivity to

particular environmental conditions (e.g., the species’ thermal

tolerance ranges), and its adaptive capacity to accommodate the

environmental change (Williams et al., 2008; Johnson and Welch,

2010; Foden et al., 2013; Mamauag et al., 2013; Pacifici et al., 2015;
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Stortini et al., 2015; Hare et al., 2016; Wheatley et al., 2017). Species that

are both highly sensitive to an environmental factor and exposed to

significant changes in that factor score as more vulnerable to climate

change effects. At the species level, this vulnerability can be assessed

quantitatively with species distribution models or mechanistic

population models linked to climate models, in order to project the

effects of climate change on abundance and distribution (Pacifici et al.,

2015). Unfortunately, these quantitative efforts generally cannot be

applied simultaneously to a large suite of species without dramatically

reducing the aspects of vulnerability to be considered because there

remains a lack of scientific infrastructure and insufficient data or

understanding for many species (e.g., Morley et al., 2018). Recently,

NOAA (National Oceanic and Atmospheric Administration) Fisheries

developed an expert-opinion, trait-based approach, first applied in the

northeast U.S. region, to provide an ecosystem-wide assessment of

climate vulnerability (Morrison et al., 2015; Hare et al., 2016).

Here, we apply this CVA approach to the California Current

LargeMarineEcosystem(henceforthCaliforniaCurrentLMEorCCLME)

(Figure 1). The CCLME is a highly productive Eastern Boundary Current

system characterized by the slow, equatorward, surface flowing California

Current and the deep poleward flowing California Undercurrent that

extends from near the United States-Canadian border (49°N) to the

southern tip of the Baja California peninsula in Mexico (23°N) (Bograd

et al., 2016). The systemowes its uncommonlyhighbiological productivity

to coastal upwelling, which brings nutrients to the surface, supporting

intense primary production (Bakun, 1990) and large biomass at higher

trophic levels. In 2019, this system supported commercial harvest in

California, Oregon, and Washington of 1.2 billion pounds of fish and

shellfishearningaround$675million(USD) in landings revenue(National

Marine Fisheries Service, 2022).
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The effects of climate change are already being reported in the

system. For example, zooplankton biomass in the southern California

Current LME has declined dramatically over the past 60 years,

attributed to a shift to smaller phytoplankton, causing a transition

from pelagic tunicates to warm water lipid-poor copepods

(Roemmich and McGowan, 1995; Lavaniegos and Ohman, 2003;

Peterson and Schwing, 2003). Across many taxa, there has been

increased abundance of warm-water species and decreased

abundance of cold-water species in the region (Poloczanska et al.,

2016), and shifts in the phenology or timing of reproduction for a

number of species (Asch, 2015). Shifts in phenology can cause a

mismatch between species and their prey (Cushing, 1990;

Satterthwaite et al., 2014), thereby potentially impacting growth and

survival. Ongoing changes in distribution and abundance of fish

species may have a substantial impact on the California Current

food-web as well as the U.S. West Coast fishing communities, the

seafood industry, and statewide economies.

To provide foundational information for the future management

of fish species in this system as well as identify key areas of future

research, we conducted a CVA to: 1) characterize the relative

vulnerability of 64 marine stocks managed for harvest or

conservation purposes; 2) evaluate the likelihood that each species

will substantially change its distribution based on its intrinsic

biological and ecological attributes; 3) assess whether the net effect

of climate change on each species is likely to be negative, neutral, or

positive; and 4) evaluate the common drivers of vulnerability to

climate change and probable distributional change. Such assessments

of the fish stocks also can serve as the foundation of a more

comprehensive assessment of the fisheries and communities

dependent upon them (e.g. Wabnitz et al., 2018).
FIGURE 1

California Current Large Marine Ecosystem (CCLME). This study assessed species within U.S. borders only.
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2 Methods

We applied the NOAA Fisheries Fish Stock Climate Vulnerability

Assessment Methodology (Morrison et al., 2015), modified for the

unique characteristics of the CCLME, to 64 species, most of which are

managed under four Fishery Management Plans (FMPs) by the

Pacific Fishery Management Council (PFMC, 2022a; PFMC, 2021;

PFMC, 2022b; PFMC, 2022c).
Frontiers in Marine Science 04
2.1 Species selection

We selected species that encompassed the full range of higher

taxa, life-history types, habitat associations, and management

categories (highly protected to highly exploited). Because many

species lack even the full complement of life history and other

information needed for this CVA, we did limit the assessment to

species with sufficient information to support evaluation based on the
TABLE 1 List of species analyzed in this study.

Functional Group Species Scientific Name

Coastal Pelagic Species Northern Anchovy Engraulis mordax

Pacific Chub Mackerel Scomber japonicus

Pacific Herring Clupea pallasii

Pacific Sardine Sardinops sagax

Jack Mackerel Trachurus symmetricus

Jacksmelt Atherinopsis californiensis

Market Squid Doryteuthis opalescens

Elasmobranch Leopard Shark Triakis semifasciata

Longnose Skate Raja rhina

Pacific Spiny Dogfish Squalus suckleyi

Flatfish Arrowtooth Flounder Reinhardtius stomias

Dover Sole Microstomus pacificus

English Sole Parophrys vetulus

Pacific Sanddab Citharichthys sordidus

Petrale Sole Eopsetta jordani

Rock Sole Lepidopsetta bilineata

Starry Flounder Platichthys stellatus

Highly Migratory Species Blue Shark Prionace glauca

Bluefin Tuna Thunnus orientalis

Common Thresher Shark Alopias vulpinus

Mola Mola mola

North Pacific Albacore Thunnus alalunga

Shortfin Mako Shark Isurus oxyrinchus

Striped Marlin Tetrapturus audax

Swordfish Xiphias gladius

White Shark Carcharodon carcharias

Yellowfin Tuna Thunnus albacares

Other Anadromous Southern Green Sturgeon Acipenser medirostris

Southern Eulachon Thaleichthys pacificus

Other Groundfish Kelp Greenling Hexagrammos decagrammus

Lingcod Ophiodon elongatus

(Continued)
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criteria we applied (Table 1). Many species that are infrequently

targeted by fisheries lack life history information and a complete

understanding of species distributions needed for CVAs. The 64

stocks encompass four functional groups corresponding to the

Fishery Management Plans: Coastal and Pelagic Species (CPS) (7

species), Highly Migratory Species (HMS) (10 species), Anadromous

Species (7 species), and Groundfish (40 species). Groundfish were
Frontiers in Marine Science 05
further split into subgroups to reflect the range of life histories:

Elasmobranchs (3 species), Rockfish (23 stocks), Flatfish (7 species),

and Other Groundfish (7 species). The CPS group included one

invertebrate, Market Squid (Doryteuthis opalescens), and the

Anadromous Species included two species not included in a Fishery

Management Plan, but listed as threatened under the U.S.

Endangered Species Act and taken as bycatch in other fisheries:
TABLE 1 Continued

Functional Group Species Scientific Name

Pacific Cod Gadus macrocephalus

Pacific Grenadier Coryphaenoides acrolepis

Pacific Whiting Merluccius productus

Sablefish Anoplopoma fimbria

Shortspine Thornyhead Sebastolobus alascanus

Rockfish Aurora Rockfish Sebastes aurora

Black Rockfish Sebastes melanops

Blackgill Rockfish Sebastes melanostomus

Bocaccio Rockfish Sebastes paucispinis

Bocaccio Rockfish - Puget Sound Sebastes paucispinis

Calico Rockfish Sebastes dalli

Canary Rockfish Sebastes pinniger

Chilipepper Rockfish Sebastes goodei

China Rockfish Sebastes nebulosus

Cowcod Rockfish Sebastes levis

Darkblotched Rockfish Sebastes crameri

Gopher Rockfish Sebastes carnatus

Honeycomb Rockfish Sebastes umbrosus

Pacific Ocean Perch Sebastes alutus

Pygmy Rockfish Sebastes wilsoni

Rosethorn Rockfish Sebastes helvomaculatus

Rougheye Rockfish Sebastes aleutianus

Shortbelly Rockfish Sebastes jordani

Shortraker Rockfish Sebastes borealis

Widow Rockfish Sebastes entomelas

Yelloweye Rockfish Sebastes ruberrimus

Yelloweye Rockfish - Puget Sound Sebastes ruberrimus

Yellowtail Rockfish Sebastes flavidus

Salmon Chinook Salmon Oncorhynchus tshawytscha

Chum Salmon Oncorhynchus keta

Coho Salmon Oncorhynchus kisutch

Sockeye Salmon Oncorhynchus nerka

Steelhead Salmon Oncorhynchus mykiss
Abbreviations for functional groups are Coastal Pelagic Species (CPS) and Highly Migratory Species (HMS).
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Southern Green Sturgeon (Acipenser medirostris) and Southern

Eulachon (Thaleichthys pacificus) Distinct Population Segments. In

two cases (both Puget Sound rockfish), a species was split into two

distinct stocks based on understanding of distinct populations and

distinct management units prior to the CVA. For simplicity, we use

the term species to refer to both stocks and species in the rest of

the paper.

Species were selected from the full range of latitudes and depths

occupied by each functional group, as well as a wide range of life

history patterns (Table 1). Species were also chosen to represent a

diversity of exploitation levels, from highly targeted to not targeted

(bycatch) to protected. For example, Mola (Mola mola), not included

in a management plan, were selected because they are a common

bycatch species in the California drift gillnet fishery (Hahlbeck

et al., 2017).

Five of the six species of salmonids in the CCLME are included in

our assessment: Chinook Salmon (Oncorhynchus tschawytscha),

Sockeye Salmon (O. nerka), Chum Salmon (O. keta), Coho Salmon

(O. kisutch), and steelhead (O. mykiss). Pink Salmon (O. gorbuscha)

were not included because there are very few populations of this

species in the region. Importantly, there are aspects of vulnerability

that are particular to salmonid species. First, due to their anadromous

life-histories, salmonids are subject to a variety of climatic influences

in the freshwater stage (e.g., droughts and floods) that are not nearly

as relevant for other marine species in this CVA (e.g., Hare et al.,

2016; Crozier et al., 2019). Second, downscaled climate projections

were available at much greater detail for the freshwater habitat used

by these species (e.g., Isaak et al., 2016; Isaak et al., 2017). Finally, the

five species included are largely managed at the finer level of Distinct

Population Segments (DPS) under the Endangered Species Act

(Waples, 1998). Here we assessed salmon at the species level, but a

separate CVA was conducted at the DPS level for all six species,
Frontiers in Marine Science 06
incorporating these additional factors (Crozier et al., 2019). The DPS-

level assessment complements our species-level assessment by

applying the same general methods at a finer geographic scale that

is more useful for management within this functional group. This

species-level assessment allows a direct comparison of salmon to the

other functional groups of the CCLME.
2.2 Biological sensitivity factors

We used the same twelve biological and life history traits

described in the NOAA methodology (Morrison et al., 2015; Hare

et al., 2016) to determine the sensitivity of a species to climate change

(Table 2). The stock size/status attribute was modified to use biomass

reference points used for California Current stocks, rather than those

used for stocks in other regions. These attributes reflect the major

pathways by which changes in climate are likely to affect the

productivity, distribution and abundance of marine species. Using

the same biological attributes maintains consistency and

comparability across regional CVAs. Species profiles, including

information from the literature, were compiled to provide scorers

with information about each of these sensitivity attributes

(Supplementary Material 1).
2.3 Climate exposure factors

We used nine exposure factors to gauge the magnitude of change

in the physical environment within a species’ range (Table 3). These

were based on those identified in the Northeast CVA (Hare et al.,

2016), with some modifications for the CCLME. Specifically, we did

not include projected changes in temperature variance because, unlike
TABLE 2 List of the twelve sensitivity attributes used in this study (from Morrison et al., 2015).

Sensitivity Attribute Description

Habitat Specificity Evaluate the relative habitat requirements for a given species, while incorporating information on the type and abundance of
key habitats.

Prey Specificity Evaluate the relative prey requirements (generalist or specialist) for a given species.

Adult Mobility Evaluate the ability of a given species to move to a new location if their current location changes and is no longer favorable
for growth and/or survival.

Dispersal of Early Life Stages Evaluate the ability of the species to colonize new habitats as they become available.

Early Life History Survival and Settlement
Requirements

Evaluate the relative importance of early life history survival requirements for a given species.

Complexity in Reproductive Strategy Evaluate how dependent reproductive success is on specific or complex environmental conditions.

Spawning Cycle Evaluate the duration of the spawning cycle and the potential for disruption of reproduction due to climate change.

Sensitivity to Temperature Evaluate the temperature tolerance of a given species; when unknown, breadth of distribution may be used as a proxy.

Sensitivity to Ocean Acidification Evaluate a given species sensitivity to ocean acidification (OA); based on its relationship with “sensitive taxa” (see text).

Population Growth Rate Evaluate the relative productivity of a given species as a measure of its ability to rebound after a negative impact.

Stock Size/Status Evaluate the relative level of stress from fishing on a given species.

Other Stressors Evaluate the relative level of stress on a given species that could negatively impact its ability to respond to changes. For
example, fishing pressure or oil spills.
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in the North Atlantic, the northeast Pacific is projected to have no

significant change in sea surface temperature (SST) variance

(Alexander et al., 2018). In addition, because upwelling is such a

critical driver of productivity in the system, we also incorporated

changes in the strength and timing of upwelling-favorable winds into

our analysis.

For six exposure factors (Table 3), we were able to obtain

quantitative measures of projected changes from Global Climate

Models (GCM). We downloaded projections of SST, air

temperature, salinity, and precipitation from an ensemble of 25 to

35 GCMs that contributed to phase 5 of the Coupled Model

Intercomparison Project (CMIP5) (Supplementary Material 2) run

with RCP 8.5 (the high emissions scenario) from NOAA’s Ocean

Climate Change Web Portal (Scott et al., 2016). While this scenario

has been criticized as less likely than others (Hausfather and Peters,

2020), there will be little difference if using RCP 4.5 since our analysis

spans 2006-2055, and emissions scenarios do not diverge greatly until

later in the century. We maintained the RCP 8.5 scenario for

consistency with previous NOAA-led CVAs. Air temperature and

precipitation projections were only used to assess climate exposure for

salmonids, since they are the only species directly affected by these

parameters. We also obtained projected pH from the eleven models

that included this variable. We then calculated standardized change as

the difference between the mean climate in the future (2006-2055)

and the mean climate of the historical period (1955-2005),

normalized by the historical interannual standard deviation.

Normalizing the data scaled the projected change to the observed

variability. So, for example, the impact of a 2°C temperature increase

was considered 10-times greater in an ecosystem with 0.1°C inter-

annual standard deviation than in one with a 1°C standard deviation.

This in turn, meant that the metric was scaled in terms of the species’
Frontiers in Marine Science 07
realized niche over the period 1955-2005 (Tewksbury et al., 2008;

Sunday et al., 2011). We also calculated the change in variance by

dividing the variance of the future (2006-2055) by the variance of the

past (1956-2005). The GCM ensemble output was mapped to a

common 1° latitude by 1° longitude grid.

For temperature exposures, we did not use the relatively newly

available downscaled models that include temperature changes for

benthic habitats (Pozo Buil et al., 2021) because they were not

available at the time we convened the experts. While they would be

a valuable addition to a future study, they do not resolve the shelf area,

and for this study, we were working to maintain consistency across

regions for the suite of North American CVAs. Finally, exposure is

based on normalized, rather than absolute change, meaning that SST

change, while potentially greater, is divided by SST variability, which

is also greater.

Given that GCMs are too coarse to resolve some important

regional circulation and mesoscale processes, and that not all

variables of interest were readily available from GCMs, we

supplemented the quantitative exposure factors with a literature

review of expected changes in additional variables (subsurface

oxygen, upwelling-favorable winds, ocean currents, and sea level

rise; Supplemental Material 3).

Both the exposure and the sensitivity factors were evaluated by

experts in fish biology (usually with a focus on a particular taxon or

functional group), oceanography, and climate science. Each expert

(see list of authors) was assigned a list of species that included species

within their expertise as well as a random selection of other species.

Even though each participant was asked to score some species outside

their specific expertise, they typically had sufficient general knowledge

of the species and its role in the ecosystem. A total of four scientists

(two with functional group expertise and two randomly assigned)
TABLE 3 Exposure factorss used in this climate vulnerability assessment.

Exposure Attribute Source

Sea surface temperature (°C) Ensemble of 25 models from NOAA’s Ocean Climate Change Web Portal [ESRL 2015]

Air temperature (°C, proxy for changes in freshwater and estuaries) Ensemble of 35 models from NOAA’s Ocean Climate Change Web Portal [ESRL 2015]

Sea surface salinity (psu) Ensemble of 25 models from NOAA’s Ocean Climate Change Web Portal [ESRL 2015]

Precipitation (mm/yr, proxy for stream flow) Ensemble of 35 models from NOAA’s Ocean Climate Change Web Portal [ESRL 2015]

Surface pH (pH) Ensemble of 11 models from NOAA’s Ocean Climate Change Web Portal [ESRL 2015]

Subsurface oxygen (mmol/kg) Bograd et al., 2008; Bakun et al., 2015; Bograd et al., 2015;
Grantham et al., 2004; Whitney et al., 2007; Chan et al., 2008; Mecking et al., 2008;
Oschlies et al., 2008; Stramma et al., 2008; Keeling et al., 2010; McClatchie et al., 2010;
Rykaczewski and Dunne, 2010; Stramma et al., 2010; Moffitt et al., 2015

Phenology and strength of upwelling favorable winds (N/m2) Bakun, 1990; Pauly and Christensen, 1995; Roemmich and McGowan, 1995; Holbrook
et al., 1997; Mote and Mantua, 2002; McGowan et al., 2003; Snyder et al., 2003; Palacios
et al., 2004; Auad et al., 2006; Sydeman et al., 2006; Barth et al., 2007; Lu et al., 2007;
Bograd et al., 2009; Collins et al., 2010; Narayan et al., 2010; Rykaczewski and Dunne,
2010; Seager et al., 2010; Black et al., 2011; Chenillat et al., 2012; Cai et al., 2014; Jacox
et al., 2014; Sydeman et al., 2014; Bakun et al., 2015; Di Lorenzo, 2015; Jacox et al., 2015;
Rykaczewski et al., 2015; Wang et al., 2015

Currents (Sv) Chavez et al., 2003; Bakun et al., 2015; Checkley and Barth, 2009; Chelton et al., 1982;
Francis et al., 1998; Meredith and Hogg, 2006; Stouffer et al., 2006; Cummins and Freeland,
2007; King et al., 2011; O’Donnell, 2015

Sea level rise (m/yr) Cayan et al., 2008; IPCC, 2013; Hansen et al., 2016; National Research Council, 2012
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independently scored each species’ sensitivity and exposure based on

the information in species profiles written by other experts, the

background exposure information, and their own expertise. For

exposure factors, experts compared maps developed from the GCM

ensemble with detailed descriptions or maps of each species’

distribution. For each metric, the experts were given five tallies to

spread across four predefined scoring bins (Low=1, Moderate=2,

High=3 and Very High=4) (Table 4), with a greater spread across

the scoring bins by an expert indicating greater uncertainty. At a

subsequent workshop, the expert group discussed the species, its

traits, and climate factors likely to affect the species, after which

experts were given the opportunity to alter the distribution of their

tallies. We calculated the mean score for each attribute as described in

Morrison et al. (2015), where the weight for each bin is determined

from their logic table. The number of tallies in a given bin were

multiplied by the appropriate weighting factor, then divided by the

total number of tallies (Morrison et al., 2015). Experts also achieved

consensus about data quality (from 1 to 3) of all factors.
2.4 Assessing species vulnerability

Species vulnerability was a function of both exposure and

sensitivity, with each factor weighted equally. We did not include

adaptive capacity as a separate component, because the sensitivity

component includes attributes indicative of both a species’ resiliency

as well as its adaptive capacity (Morrison et al., 2015). This approach

was similarly taken in Fortini and Schubert (2017).

By weighting sensitivity and exposure factors equally, each is

treated as independent; a correlation analysis (Supplementary

Material 4) confirms that biological sensitivity and climate exposure

scores were not strongly correlated; all pairwise correlation

coefficients were under 0.8. As a sensitivity test, we removed the

exposure and sensitivity factors with the strongest correlations with

other factors—sea level rise and dispersal of early life history

characteristics—from the analysis and found that the overall

vulnerability ranks did not change.

2.4.1 Generating overall vulnerability scores
To assess the overall climate vulnerability, we first applied a logic

model (Table 4) separately to both the biological sensitivity and

climate exposure factors’ weighted means. This model was intended

to qualitatively summarize cumulative risk, and depended on both the
Frontiers in Marine Science 08
number of factors and ratings for each. We calculated the overall

climate vulnerability for each species as the product of the numeric

values assigned to biological sensitivity and climate exposure. These

scores range from 1 to 16 with values of 1 to 3 being categorized or

ranked as Low, 4 to 6 as Moderate, 8 to 9 as High, and 12 to 16 as Very

High climate vulnerability (there is no product that will equal 7, 10, or

11). In this paper, ‘ranks’ or ‘categories’ refer to these bins, and ‘scores’

refers to the numerical value in this vulnerability model.

We evaluated certainty in the assignment of a climate

vulnerability category with a bootstrap analysis (Morrison et al.,

2015) that randomly samples, with replacement, the expert reviewer

tallies (n=20) for each biological sensitivity and climate exposure

factor 1,000 times. The resampled tallies were used to calculate new

climate vulnerability scores, and the percentage of runs in which the

species was assigned to a different vulnerability rank was noted.

We also conducted an analysis that calculated the overall climate

vulnerability score using median estimates of the weighted averages

and calculating the Euclidean distance between the origin and point

location on a plot of sensitivity × exposure, as a check to the logic rule

approach. The results of this analysis were very similar to those from

the logic rule and are not presented.
2.4.2 Distributional shifts
We used a subset of the biological sensitivity factors to evaluate

the likelihood that a species would exhibit a shift in distribution

with climate change. Stocks with highly mobile adults, broadly

dispersing early life stages and low habitat specificity are likely to

have the intrinsic ability to shift distribution under changing

conditions. Those species with high temperature sensitivity were

most likely to shift their distributions (Hare et al., 2016). We

calculated the distributional shift score by applying the same

component score logic model to the Temperature Sensitivity score

and the inverse of the scores for Adult Mobility, Early Life Stage

Dispersal, and Habitat Specificity. This resulted in a categorical

ranking of the species’ expected ability to shift distribution given

climate change from Low to Very High.
2.4.3 Overall negative or positive (directional)
effect of climate change

In addition to exposure and sensitivity scores, experts scored the

expected overall impact of climate change on each species as positive

(value of 1), negative (value of -1), or neutral (value of 0) to describe

the directional effect of climate change (Morrison et al., 2015),

distributing four tallies across the three categories and calculating

the mean. Species scoring < -0.333 are classified as being negatively

affected; species scoring > 0.333 are classified as being positively

affected, and species scoring between -0.333 and 0.333 are classified as

being neutrally affected.
2.4.4 Importance of climate exposure factors and
sensitivity attributes

For this sensitivity analysis, the overall vulnerability score for each

species was calculated leaving out the scores for each sensitivity

attribute or exposure factor. These analyses were then evaluated
TABLE 4 Logic rule for calculating overall species’ climate exposure and
biological sensitivity.

Overall sensitivity or
exposure score Numeric score Logic rule

Very High 4 >3 factors with means >= 3.5

High 3 >2 factors with means >= 3

Moderate 2 >2 factors with means >= 2.5

Low 1 All other scores
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across species to determine influential factors and attributes in the

overall vulnerability rank.

2.4.5 Sensitivity to external factors considered in
vulnerability ratings

We considered the possibility that vulnerability rankings might

change if only characteristics intrinsic to the species, such as its life

history traits and habitat specificity, were included in the assessment.

Thus, we conducted a sensitivity analysis that excluded two attributes

driven or heavily influenced by external factors—Other Stressors and

Stock Size/Status—and then recalculated the vulnerability scores.
2.5 Differences between functional
groups and drivers of vulnerability to
climate change

To examine differences in exposure and sensitivity attributes

among species and to evaluate whether particular attributes were

associated with High and Low vulnerability scores, we first reduced

the number of predictive variables. Specifically, we collapsed the

biological sensitivity and climate exposure factors for the 64 stocks

using nonmetric multidimensional scaling (NMDS; Kruskal, 1964;

Mather, 1976). This robust method produces ordination scores for

each factor on each dimension or axis that serve as an indicator of its

importance. We selected this approach over other ordination

methods (e.g., Principal Components Analysis [PCA]) because

NMDS is extremely flexible, makes few assumptions about the data,

and is capable of analyzing many different data types that might not

satisfy the assumption of normality (Dexter et al., 2018). We

implemented this analysis with the R statistical program (R Core

Team, 2016) using the ‘vegan’ package (Oksanen et al., 2017) and a

Euclidean distance measure. First, a random initial starting

configuration helped determine the appropriate number of

dimensions (n≥2) for the best ordination by examining stress

versus dimension plots for exposure and sensitivity separately.

Kruskal (1964) recommended that reasonable fits for ordinations

should have stress values less than 0.2. We identified the best solution

when the standard deviation in stress (the correspondence between

the original distance matrix and the ordination distances) over the

preceding 10 iterations reached 0.00001. Using these criteria, two

NMDS axes sufficiently described the variability in the exposure and

sensitivity scores among the species. For the sensitivity ordination, a

solution with a sufficiently low stress value (0.14) was converged upon

after 20 random starts. Similarly, for the exposure ordination, a

solution with a sufficiently low-stress value (0.08) was converged

upon after 20 random starts. This suggests that the ordinations we

found are meaningful (i.e., they correspond to the original matrix),

and were unlikely to have occurred by chance. Ordination (column)

scores for the factors and attributes were estimated using weighted

averages of the species scores for each column. The NMDS analysis

captured nearly all the variation in climate exposure and biological

sensitivity in the resulting axes. Specifically, the proportion of

variance represented by two axes between the original distance

matrix and the ordination distances was 0.93 and 0.99 for the

sensitivity and exposure ordinations, respectively.
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We then used linear models to assess whether there were

particular exposure or sensitivity attributes that were more

associated with high or low vulnerability to climate change. We fit

linear models with the attribute as the response and the NMDS axes

as the predictor covariates using the ‘envfit’ function in the ‘vegan’

package (Oksanen et al., 2017). This package automatically

normalizes the NMDS axes scores, so that the beta values provide

an indication of the relative importance of that NMDS axis to that

attribute. We arbitrarily identified attributes as ‘important’ if the

linear model for that attribute had an r2 value larger than 0.7 and an

absolute beta value for one of the NMDS axes that was larger than 0.8.

To determine whether there were significant differences between

functional groups in their exposure or sensitivity characteristics, we

also conducted a Multi-Response Permutation Procedure (mrpp)

across functional groups using the ‘vegan’package (Oksanen et al.,

2017). This is a flexible, non-parametric MANOVA approach, using

the individual species’ NMDS ordination scores as input, that allows

pairwise comparisons between the groups.
2.6 Species narratives

Species-specific narratives document the specific results for each

species (Supplementary Material 5). These narratives include the

overall climate vulnerability, directional effect, potential for

distribution change and uncertainty in those scores. In addition,

they provide the distribution of tallies and the data quality score for

each exposure factor and biological sensitivity attribute. Finally, they

provide an overview of each species’ life history and a summary of the

likely climate effects on that species.
3 Results

Overall, two-thirds of the species we evaluated had, by this expert-

opinion-based approach, Moderate or greater vulnerability to climate

change and only one species was anticipated to have a positive

response. We did not evaluate these species outside of the

California Current LME, so these results pertain only to this

system. Functional groups varied systematically in their attributes

and vulnerabilities, and vulnerability was significantly associated with

several key sensitivity attributes, including Population Growth Rate

and Early Life History Requirements.
3.1 Species-level vulnerability

Of the 64 stocks or species included in the CCLME CVA, 5% were

classified as Very Highly vulnerable to the anticipated effects of

climate change, 20% were Highly vulnerable, 42% were Moderately

vulnerable, and 33% had Low vulnerability to climate impacts

(Figure 2). Two of the three species considered Very Highly

vulnerable were anadromous (Chinook salmon and Southern Green

Sturgeon), while the remaining species was a groundfish with a highly

restricted range that is listed as threatened under the U.S. Endangered

Species Act (Yelloweye Rockfish – Puget Sound (S. ruberrimus);
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National Marine Fisheries Service, 2017). Similarly, the Highly

vulnerable category was dominated by salmonids and long-lived

rockfishes. Also in the High category were Pacific Bluefin Tuna

(Thunnus orientalis), which has a very vulnerable stock status due

to heavy international fishing and Pacific Spiny Dogfish (Squalus

suckleyi), which has higher sensitivity due to life history

characteristics and higher exposure due to habitat preferences that

caused higher scores than for other elasmobranchs. All but six of the

27 species categorized as Moderately vulnerable were groundfishes,

with rockfishes dominating, and including some HMS species. The

majority of Low vulnerability species were HMS, Flatfish, and CPS

species (Figures 2 and 3A).

Overall, the categorization was fairly robust according to the

bootstrap analysis (a resampling of the experts’ tallies), with only

about one-third of the species likely to fall in lower or higher risk

categories more than 25% of the time (species in italics in Figure 2).

All salmon species in the assessment fell in either the Very High

(Chinook) or High (all others) categories; with all except Chum

Salmon having a >25% likelihood of being in the other category

(either direction). The remainder of species in the High vulnerability
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category that had a >25% likelihood of falling in another category

were three rockfish species and one Elasmobranch with a high chance

of being categorized as Moderate in the bootstrap analysis. A third or

fewer of species in the Moderate and Low vulnerability categories had

a high likelihood of being categorized differently in the bootstrap

analysis. Because our analysis provides a relative ranking, the

probability of being reclassified can help identify those species with

the highest risk within each category.
3.2 Distributional shift

Most species (n=46, 72%) we evaluated were judged to have a

High or Very High likelihood of effecting a distributional change. The

Very High category was dominated by HMS (not surprisingly), CPS,

and also included Elasmobranchs, Flatfish and Other Groundfish.

Rockfishes and Green Sturgeon scored at the other end of the

spectrum, with low probability of a shifting range, only three

species (two rockfishes and Southern DPS of Green Sturgeon) were

judged to have a low probability of range shift (Figure 3B).
FIGURE 2

Vulnerability categorization for California Current LME species. Vulnerability categories are colored from green (Low) to red (Very High). Species or stocks
in bold had a >25% chance of being placed in the next highest vulnerability category in our bootstrap analysis; those in italics had a >25% chance of
being placed in the next lowest vulnerability category in that analysis.
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3.3 Overall positive or negative
(directional) effect

Nearly half of the species assessed (n=31) were thought to

experience largely negative effects from climate change (i.e., overall

score <-0.33) (Figure 3C). Only one species, Arrowtooth Flounder

(Atheresthes stomias), was considered likely to respond positively

(score >0.33) to climate change within the CCLME, as all its

sensitivity attributes, except population growth rate, were judged to

be Low risk. All remaining species had scores between 0.33 and -.033,

with only two of these having scores ≥ 0 (thus most of the species that

were judged to have a neutral response to climate change had

primarily negative scores). All of the Anadromous species and just

over half of the Rockfish and Other Groundfish species are expected

to be negatively impacted. In addition, 9 of 27 species in the Flatfish,

CPS, Elasmobranch, and HMS functional groups are expected to have

negative impacts, with the remainder expected to have a neutral

response to climate-driven environmental changes.
3.4 Importance of individual climate
exposure factors and biological
sensitivity attributes

Nearly all species had High exposure to climate-driven changes

(the remaining 5 had Moderate exposure). The primary contributors

to these high exposure scores were ocean acidification and

temperature increases. (Figure 4). These two factors had high
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average scores across nearly all species in the analysis (Figure 4A).

When removed from the vulnerability ranking in a sensitivity

analysis, these two exposure factors also affected the vulnerability

rankings for nearly a third of the species we assessed (Figure 4B).

The biological sensitivity attributes were less extreme than (or

more complex than) the climate exposure factors and reflected more

heterogeneity among species (Figure 5A). Variation in these attributes

largely drove variation in overall vulnerability categorization

(Supplementary Material 6). Two biological sensitivity attributes

that had the strongest influence on climate vulnerability based on

the sensitivity analysis that removed individual attributes were

Population Growth Rate and Early Life History Requirements

(Figure 5B). Other attributes that had lesser effects were Dispersal

of Early Life Stages, Spawning Cycle duration, Stock Size,

Reproductive Complexity, Temperature Sensitivity, and

other stressors.
3.5 Sensitivity of vulnerability scores to
‘non-intrinsic’ conditions

An additional sensitivity analysis removed anthropogenic factors,

such as heavy exploitation, in order to evaluate whether vulnerability

ratings were being strongly influenced by these factors that are not

intrinsic to the species’ biology and life history. In this analysis, the

ratings of only three species (Yelloweye Rockfish, Striped Marlin

(Kajikia audax), and Chinook Salmon) changed to a lower

vulnerability rating, suggesting that overall vulnerability of CCLME
A B C

FIGURE 3

Number of species by (A) climate vulnerability category; (B) likelihood of change in geographic distribution; and (C) likelihood that climate change effects
will be negative, neutral, or positive in each functional group.
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species to climate change is largely driven by life history and other

species characteristics (Results not shown.)
3.6 Differences between functional groups
in drivers of vulnerability to climate change

The functional groups we defined were nearly all significantly

different from each other in their vulnerability profiles (exposure and

sensitivity characteristics), based on the mrpp analysis (Figure 6,

Table 5). In fact, there were only three pairwise comparisons

among all species groups that were not significantly different from

each other in their exposure and sensitivity attributes (a=0.05). Other
Anadromous Species were not significantly different from either

Salmon or CPS; Flatfish and Other Groundfish were also not

significantly different. In each case, the relevant groups share either

distributional or life history characteristics, or both. Overall, this

suggests that shared traits across broad phylogenetic or functional

groupings contribute substantially to species’ assessed level of

vulnerability to climate-driven environmental changes.

Both sensitivity and exposure factors were strongly associated

with ordinal vulnerability scores. The first NMDS axis of biological

sensitivity attributes was highly significantly correlated with

vulnerability (r=0.83, t = 11.80, df = 63, p-value < 2.2e-16).

Reproductive strategy (b = 1.00) and Other Factors (b = 0.88) were

identified as important factors relative to this axis, while Population

Growth Rate (b = 0.97) and Early Life History Dispersal (b = -0.83)
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were important relative to the second NMDS axis (Figure 6, Table 6).

The species expected to be most sensitive to climate change were

those with more complex reproductive strategies. Exposure was also

strongly associated with vulnerability on the first two NMDS axes

(Exposure NMDS Axis 1: r = 0.44, t = 3.89, df = 63, p-value < 0.001;

Exposure NMDS Axis 2: r = -0.39, t = -3.35, df = 63, p-value = 0.001).

This translated to the most important factors being increased air

temperature (which was not included for wholly marine species) (b =

1.00) and sea level rise (b = 0.96) on NMDS Axis 1, and increased

hypoxia (b = -0.99) on Axis 2 (Figure 6, Table 7). More generally, the

first axis was strongly associated with anadromy, with marine species

being the least vulnerable and anadromous species the most

vulnerable. In contrast, the second axis was more associated with

groundfish versus HMS. Rockfish, and other groundfish that live near

the benthos, are more susceptible to the effects of hypoxia, which is

one of the reasons these functional groups were judged to be more

vulnerable to climate-driven changes.
4 Discussion

This paper presents an expert-opinion approach to providing a

qualitative climate vulnerability assessment for 64 California Current

LME marine and anadromous fish species and stocks. Given that

there are relatively few mechanistic climate-population models

available for species in the CCLME, this approach provides a

valuable resource for managers to evaluate relative climate
A

B

FIGURE 4

Average climate exposure scores across all species (A) and results of sensitivity analysis (i.e., removing the factor) for the effect of individual exposure
factors on overall climate vulnerability (B). Methods follow those in Morrison et al. (2015).
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vulnerabilities. These results 1) provide timely advice for prioritizing

species-level data collection and climate impacts research, 2) provide

information about relative risk levels for these species for

management use until better information becomes available, 3) help

managers determine when and where a precautionary approach

might be warranted in harvest decisions, and 4) help identify

habitats or life history stages that might be especially important

to protect.

We found that experts overwhelmingly expect the impacts of

climate change to be negative to neutral for CCLME species, and that

all species will be exposed to some level of environmental change

(Figures 2-4; Supplementary Material 6). Vulnerability to climate

changes was driven by life history characteristics, habitat use, overall

population status and the presence of other stressors, such as fishing.

Species classified as Highly or Very Highly vulnerable share one or

more characteristics including: 1) complex life histories that utilize a

wide range of freshwater and marine habitats [e.g., anadromous

species consistent with Martins et al. 2012; Hare et al. (2016) and

Crozier et al. (2019)]; 2) habitat specialization, particularly for areas

that are likely to experience increased hypoxia (e.g., rockfishes); 3)

long-lived species with low population growth rates (e.g., Pacific

Spiny Dogfish or rockfishes); and/or 4) high commercial value

combined with impacts from non-climate stressors (e.g., Bluefin

Tuna). Species judged to have Low or Moderate vulnerability tend

to be habitat generalists, occupy deep-water habitats or are highly
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mobile. Highly Migratory Species, Coastal Pelagic Species, Flatfish,

and Other Groundfish all showed relatively high potential for

distributional change, while some Rockfishes and anadromous

species tended to have the lowest potential for changes in

distribution. Importantly, distributional shifts can be in a variety of

dimensions – including to deeper habitats with more

favorable temperatures.
4.1 Drivers of vulnerability scores,
uncertainty, and current conditions

Species-vulnerability categorizations within the California Current

LME were generally consistent across our expert panel, were not overly

sensitive to the boot-strapping exercise, and in several cases are

consistent with observations or other research. However, there are

some areas that may merit additional investigation.

Two other analyses that used the methodology of Morrison et al.

(2015) had notable similarities and differences to our results. Ocean

acidification was also an exposure attribute judged to be high in the

Eastern Bering Sea (Spencer et al., 2019), and both OA and SST were

strong drivers of vulnerability in exposure in the CVA for

northeastern U.S. marine species (Hare et al., 2016). Because these

two factors are among the most certain to occur, they move the overall

exposure ratings higher for nearly all species. All three CVAs found
A

B

FIGURE 5

Average sensitivity attribute scores across all species (A) and results of sensitivity analysis (i.e., removing the attribute) for the effect of individual sensitivity
attributes on overall climate vulnerability scores (B). Methods follow those in Morrison et al. (2015).
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that population growth rates were key drivers of vulnerability among

the biological sensitivity factors. Further, all three noted that

diadromous fishes had some of the highest vulnerability rankings.

Contrasting with the results from these CVAs, we found a stronger

effect of other biological sensitivity factors, such as reproductive

strategy, on vulnerability. In addition, in the northeastern U.S.,

about one-fourth of the species were at Low vulnerability and 17%

of the species in that region were likely to be positively affected by

climate change. In the Eastern Bering Sea, which used both a shorter

time scale and a more optimistic projection of climate changes, all

species were categorized as having Low or Moderate vulnerability. In

contrast, all but one of the species evaluated in the CCLME were

projected to experience negative or neutral effects.

It could be argued that the inclusion of factors that were not part

of the biology or ecology of the species, such as the impact from other

stressors and stock status (relative to fishing), were not appropriate

since they did not reflect an “intrinsic” vulnerability to climate

change. Our sensitivity analysis suggests that these factors, while

important, did not substantively change the relative ranking of species

along the U.S. West Coast. Removing them automatically lowers the

total sensitivity scores by our criteria, because the total sensitivity

score depends on the number of attributes in high categories.

Therefore, removing factors can only result in a lower score. More

importantly, however, we note that the combined effects of climate

change and ‘external’ factors do affect a species’ ability to respond to

change in the environment (Essington et al., 2015). These factors are

well-known to affect adaptive capacity. Populations that are

negatively affected by fishing, in particular, have reduced effective

population sizes and therefore genetic variance. Pollution and other
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stressors also lower the fitness of affected populations, making them

less resilient to a change –particularly because some of these other

stressors may be exacerbated by climate change (Hsieh et al., 2006).

Fully estimating the climate vulnerability of a species, then, is

incomplete without including the magnitude of non-climate

stressors and they must be included in the vulnerability analysis.

Ocean acidification was gauged to be one of the most certain

environmental changes in this region, with the most uncertain effect

on the species we evaluated. Fishes in general are thought to be relatively

less affected by decreasing pH, in comparison with other taxa such as

pteropods (Busch and McElhany, 2016). However, the impacts of ocean

acidification on food webs are almost entirely unknown, and have the

potential to be dramatic, as impacts on lower trophic levels can propagate

throughout the system (Marshall et al., 2017). Furthermore, pH is highly

variable in the CCLME due to coastal upwelling (Frieder et al., 2012).

Some CCLME fish and shellfish species are currently periodically

exposed for relatively short periods of time to corrosive waters,

particularly along the coasts of Oregon and Washington (Berger et al.,

2021; Siedlecki et al., 2021). These species have not, however, experienced

the prolonged, strong change that is projected under future conditions,

nor do they have the option of moving out of such areas as they do now

(Keller et al., 2017; Berger et al., 2021; Siedlecki et al., 2021). It is

important to determine whether species will be affected by a decrease

in the mean pH, even if they have been briefly exposed to those values

previously, or whether the most extreme pH values control physiological

and behavioral effects. Further research into the impacts of ocean

acidification on fish species and the California Current food webs

could help reduce the uncertainty of the impacts of this highly certain

effect of increasing carbon dioxide in the earth system.
A B
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FIGURE 6

Non-metric multidimensional scaling (NMDS) plots showing the position of each of the 64 species relative to the two NMDS axes for climate exposure
(A–C) and biological sensitivity (D–F). Panels (A) and (D) are color-coded by the species vulnerability scores, showing association between vulnerability
and NMDS axis scores. Panels (B) and (E) are color-coded by functional group, showing that these groups tend to cluster along the NMDS axes. The
correlation between the climate factors and the NMDS axes are represented by the length of the arrows in panel (C) and the correlation between the
biological sensitivity attributes and the NMDS axes are represented by the length of the arrows in panel (F). Only factors with significant correlations with
either NMDS axis are displayed these panels. Abbreviations for strongly correlated factors include population growth rate (PG), reproductive strategy (RS),
early life history dispersal (ED), other (Oth), air temperature (TE), sea level rise (SLR), dissolved oxygen (O2).
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This assessment also made clear that decreases in subsurface

oxygen will disproportionally affect rockfish and groundfish species

because their benthic habitats already experience relatively low

dissolved oxygen concentrations (Moffitt et al., 2015). In fact,

massive rockfish die-offs were observed in the CCLME in 2002

when upwelling transported dissolved oxygen-depleted deep water

onto the inner shelf (Grantham et al., 2004). These hypoxic

conditions have been found seasonally each year since 2002, and

were particularly notable in 2010, 2011, 2012, and 2014, when

reduced catch-per-unit-effort of many groundfish species and die-

off of invertebrate and fish species were also observed (Keller et al.,

2017). While dissolved oxygen levels in the CCLME are seasonally

and spatially variable, they are likely to decrease (i.e., the CCLME is

likely to experience more hypoxia) as the climate changes (IPCC,
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2014b; Howard et al., 2020; Pozo Buil et al., 2021; Siedlecki et al.,

2021). In fact, given the strong natural variability in the northeast

Pacific, this region is projected to experience especially pronounced

oxygen loss (Long et al., 2016), suggesting that oxygen depletion will

be an important factor in determining future population persistence

and distribution, and potentially, overall community composition.

Other assessments have produced results similar to ours. For

instance, our experts estimated that Coastal Pelagic and Highly

Migratory Species would be the most likely functional groups to

change distribution in response to climate change. A quantitative

simulation projecting fishery landings of Pacific sardine (Sardinops

sagax caerulea), a CPS species, also found a shift in distribution with

climate change, with an increase of up to 50% of landings at northern

ports (Smith et al., 2021). Checkley et al. (2017) found that factors we
TABLE 5 Multi-Response Permutation Procedures results showing pairwise comparisons of functional groups in exposure and sensitivity characteristics.

Functional Group 1 Functional Group 2 T A p-value

Flatfish Rockfish -12.667 0.252 0.00000

Flatfish Highly Migratory Species -3.777 0.106 0.00248

Flatfish Salmon -6.882 0.485 0.00057

Flatfish Other Anadromous -2.986 0.156 0.01032

Flatfish Other Groundfish -0.793 0.033 0.19956

Flatfish Elasmobranch -4.313 0.233 0.00111

Flatfish Coastal Pelagic Species -3.846 0.241 0.00379

Rockfish Highly Migratory Species -17.849 0.305 0.00000

Rockfish Salmon -15.621 0.364 0.00000

Rockfish Other Anadromous -2.048 0.053 0.03656

Rockfish Other Groundfish -7.126 0.129 0.00002

Rockfish Elasmobranch -6.220 0.133 0.00012

Rockfish Coastal Pelagic Species -9.880 0.198 0.00000

Highly Migratory Species Salmon -10.430 0.462 0.00001

Highly Migratory Species Other Anadromous -2.224 0.096 0.03296

Highly Migratory Species Other Groundfish -2.868 0.087 0.01017

Highly Migratory Species Elasmobranch -4.126 0.169 0.00164

Highly Migratory Species Coastal Pelagic Species -2.787 0.112 0.01664

Salmon Other Anadromous -1.537 0.077 0.07194

Salmon Other Groundfish -6.975 0.486 0.00051

Salmon Elasmobranch -4.120 0.365 0.00425

Salmon Coastal Pelagic Species -4.459 0.370 0.00406

Other Anadromous Other Groundfish -1.975 0.124 0.04166

Other Anadromous Elasmobranch -1.876 0.253 NaN

Other Anadromous Coastal Pelagic Species -1.279 0.127 0.10477

Other Groundfish Elasmobranch -3.741 0.264 0.00318

Other Groundfish Coastal Pelagic Species -3.921 0.260 0.00305

Elasmobranch Coastal Pelagic Species -3.171 0.408 0.01071
fron
‘T’ is the T-statistic and ‘A’ is a chance-corrected estimate of the proportion of the distances explained by group identity; a value analogous to a coefficient of determination in a linear model. (P-values
not corrected for multiple comparisons).
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considered, including temperature increases and upwelling-favorable

winds would likely shift both sardine and anchovy farther north.

Other distribution models (Phillips et al., 2014; Christian and

Holmes, 2016) predict large-scale northward shifts of albacore, a

Highly Migratory Species, as our assessment does. English et al.

(2022) looked at trends in biomass for 38 demersal species in

British Columbia, most of which were also included in our analysis.

They found that biomass trends were negatively associated with

warming, consistent with our analysis, and also found that biomass

declined in the warmest locations and increased in the cooler

locations, suggesting a redistribution of species. Finally, Arrowtooth

flounder, the only species in our assessment judged to have a likely

positive response to climate change, was the subject of a

comprehensive assessment of its vulnerability to ecosystem change

in the Gulf of Alaska (Doyle et al., 2018). While these authors found

some stage-specific sensitivity to climate change, their overall

conclusion was that this species would exhibit low risk and high

resilience in this region, matching our own results. In contrast, our

assessment estimated a Moderate vulnerability to climate change for
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Pacific cod; this species has recently experienced a collapse in the Gulf

of Alaska (Williams et al., 2022), suggesting that additional

information about the population dynamics for this species in the

California Current is likely to be important to identify environmental

factors that are associated with recruitment and survivorship.

We conducted this assessment for species within the U.S.

Exclusive Economic Zone, and managed, in part, by the Pacific

Fishery Management Council. This creates two areas of uncertainty.

The first is that many of these species cross national boundaries—

the risk we report is thus the risk within continental U.S. waters, and

may be different if the species is considered across its entire range.

The second is that some of these species may encompass

demographically distinct populations (equivalent to ESUs for

salmonids) that have not yet been identified. The population

structure of West Coast marine species such as lingcod is being

evaluated (Longo et al., 2020). This uncertainty can be removed by

re-conducting these risk assessments to reflect appropriate

population boundaries when significant population differentiation

is detected, as Crozier et al. (2019) did for salmonids.
TABLE 6 Results from linear models relating the NMDS axes scores to each of the biological sensitivity factors.

Factor NMDS1 NMDS2 R2 p-value

Adult mobility 0.49 0.87 0.38 <0.001

Reproductive Strategy 1.00 0.00 0.73 <0.001

Early Life History Dispersal 0.55 -0.83 0.78 <0.001

Early Life History 0.94 0.34 0.44 <0.001

Habitat Specificity 0.96 0.27 0.37 <0.001

Population Growth 0.25 0.97 0.76 <0.001

Prey Specificity 0.74 0.67 0.01 0.746

Ocean Acidification Sensitivity 0.57 -0.82 0.21 0.002

Temperature Sensitivity 1.00 -0.06 0.18 0.002

Spawning Cycle Duration 1.00 -0.04 0.60 <0.001

Stock Size 0.80 0.60 0.40 <0.001

Other 0.88 -0.47 0.80 <0.001
fron
The NMDS axis scores were normalized prior to model fitting, so the relative size of the beta value for each axis represents the relative importance of that axis on the factor.
TABLE 7 Results from linear models relating the NMDS axes scores to each of the climate exposure factors.

Factor NMDS1 NMDS2 R2 p-value

Currents 0.02 -1.00 0.41 <0.001

Air Temperature 1.00 0.00 0.95 <0.001

Precipitation 0.97 0.25 0.57 <0.001

Salinity 0.13 -0.99 0.15 0.011

Sea Surface Temperature -0.91 -0.42 0.03 0.424

Ocean Acidification 0.15 -0.99 0.07 0.113

Upwelling 0.21 -0.98 0.32 <0.001

Sea Level Rise 0.96 -0.28 0.89 <0.001

Subsurface Oxygen -0.12 -0.99 0.85 <0.001
The NMDS axis scores were normalized prior to model fitting, so the relative size of the beta value for each axis represents the relative importance of that axis on the factor.
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4.2 CVA applications in management

Results from climate vulnerability assessments can be used by

managers and scientists in a variety of ways, including prioritizing

species for conservation or other actions, informing fishery and

protected resource management decision-making, and identifying

priority areas of research and enhanced monitoring. In doing so,

there are a variety of important considerations.

First, the results of our climate vulnerability assessment are

relative, and not quantitative. Thus, while a species may be

considered to be Moderately vulnerable, by definition these species

have areas of biological sensitivity and exposure that pose some

degree of risk under climate change. This work identifies those

areas on a species-specific basis; reviewing these factors for any

species subject to regulatory or management decisions will provide

key information about actions that may increase or decrease the risk

to that species.

Second, expert opinion regarding the impact of climate change is

overwhelmingly negative or neutral for the species we evaluated in the

CCLME, with only a single species anticipated to benefit from climate

change. This suggests that a precautionary approach to management

may be warranted, to improve the likelihood that species are as

resilient as possible as these changes accrue. Supporting the ability of

species to maintain diversity in life history and morphological

characteristics as well as adequate abundance and population

growth rates are key components to promoting their ability to

respond effectively to climate change (Moore et al., 2010; Schindler

et al, 2010).

Next, species varied in the likelihood of changing distribution. In

fact, we are seeing some of these changes already (Morley et al., 2018).

For those species that are likely to shift their range or are currently

shifting their range, this will bring an array of management

challenges, since fisheries management is inherently spatial. State or

nation-based controls, including the distribution of protected areas,

may need to be revisited to consider likely future conditions. Further,

fishing communities and individual fishers accustomed to historical

species distributions may find it necessary to travel further to access

shifting fishing grounds or to cope with lower availability (Young

et al., 2019; Selden et al., 2020; Papaioannou et al., 2021). In addition,

some species may move out of the boundaries of existing fishery-

independent survey design, requiring rapid adaptation and resources

to provide the critical survey data and information for assessing and

managing species. Range shifts are also likely to affect fishing-

dependent coastal communities, and societal adaptation may be

required. For those species unlikely to shift their distributions in

response to environmental changes, managers may choose to

consider alternative approaches that improve their resilience and

overall status, or that facilitate their movement (McClure et al., 2013).

Overall, the ecological impacts of shifting distributions—and

particularly of unequal shifts within a marine community—are

uncertain. This is not the only area of uncertainty relevant for the

application of this analysis to management. Obviously, the projections

of magnitude and rate of climate change are uncertain. The effects of
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ocean acidification on marine fishes are poorly understood. Many

species depend on nearshore habitats for juvenile rearing, and this

assessment does not incorporate many of the environmental factors

relevant for these habitats, such as changes in estuarine and nearshore

vegetation and bottom-type. The impact of climate change on poorly

resolved features and processes that are important in this system such

as spatial heterogeneity in upwelling, eddies, and currents also continue

to be poorly understood. Thus, like Hare et al. (2016), we suggest an

iterative approach to vulnerability assessments. Revisiting these

assessments will be particularly important when significant

advancements in climate data or projections (either regionally or

globally) are made or when substantive improvements in our

understanding of the biology and ecology of species and the impacts

of poorly understood factors such as ocean acidification on them

are achieved.

This assessment also indicates key areas for future research.

Models that include more mechanistic understanding of climate

drivers on populations, food webs and ecosystems, and that include

those species judged to be most vulnerable to climate change, can

inform appropriate management measures and contribute to the

national move toward Ecosystem Based Fisheries Management and

the implementation of the Pacific Fishery Management Council’s

Fishery Ecosystem Plan (Pacific Fishery Management Council, 2013).

Importantly, our work is an assessment of the fished stocks in the

California Current LME. A climate vulnerability assessment for the

fisheries and communities that the fished stocks support requires a

broader ecosystem-wide assessment of species that interact directly or

indirectly with the fishery, as well as social and economic elements of

those fisheries. This includes not only those directly involved in the

fishery (fishers, processors, regulatory agencies), but also the

communities that interact with these fisheries (e.g., Ekstrom et al.,

2015; Colburn et al. 2016; Silva et al., 2019; Santora et al., 2020;

Dudley et al., 2021). For example, Koehn et al. (2022) provide an

assessment of the social-ecological vulnerability of West Coast fishing

communities to climate-driven changes in fish species. Those

communities that are particularly reliant on vulnerable species and

that have a lower social adaptive capacity are especially vulnerable.

Species-specific climate vulnerability assessments, such as that

presented here, are critical both for identifying species to target for

enhanced monitoring or mitigation planning and for providing the

foundation for these more comprehensive social-ecological analyses

(e.g., Barange et al., 2014; Maina et al., 2015; Wabnitz et al., 2018;

Rogers et al., 2019; Payne et al., 2021).

We have shown that there are real risks to marine fishery species

in the CCLME from climate change, and that its constituent

communities are likely to be altered by range changes of many of

the species found in this region. The species that are most vulnerable

are those already at risk due to low population growth rates and

impacts from non-climate stressors, and those with complex

reproductive strategies. Climate is already modifying fish and

fisheries in this region, and this work provides key information for

both scientists and managers as they seek to understand and address

the long-term sustainability of CCLME fisheries.
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Hoegh-Guldberg, O., et al. (2016). Responses of marine organisms to climate change
across oceans. Front. Mar. Sci. 3. doi: 10.3389/fmars.2016.00062

Pozo Buil, M., Jacox, M. J., Fiechter, J., Alexander, M. A., Bograd, S. J., Curchitser, E. N.,
et al. (2021). Dynamically downscaled ensemble projections for the California current
system. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.612874

R Core Team (2016). R: A language and environment for statistical computing, version
3.0 (Vienna, Austria: R Foundation for Statistical Computing).

Roemmich, D., and McGowan, J. (1995). Climatic warming and the decline of
zooplankton in the California current. Science 267 (5202), 1324–1326. doi: 10.1126/
science.267.5202.1324

Rogers, L. A., Griffin, R., Young, T., Fuller, E., St. Martin, K., and Pinsky, M. L. (2019).
Shifting habitats expose fishing communities to risk under climate change. Nat. Clim.
Change 9, 512–516. doi: 10.1038/s41558-019-0503-z

Rykaczewski, R. R., and Dunne, J. P. (2010). Enhanced nutrient supply to the California
current ecosystem with global warming and increased stratification in an earth system
model. Geophys. Res. Lett. 37, L21606. doi: 10.1029/2010GL045019

Rykaczewski, R. R., Dunne, J. P., Sydeman, W. J., Garcıá-Reyes, M., Black, B. A., and
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