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A B S T R A C T   

Recovering marine animal populations and climate-driven shifts in their distributions are colliding with growing 
ocean use by humans. One such example is the bycatch of whales in commercial fishing, which poses a significant 
threat to the conservation and continued recovery of these protected animals and is a major barrier to sustainable 
fisheries. Long-lasting solutions to this problem need to be robust to variability in ecological dynamics while also 
addressing socio-cultural and economic concerns. We assessed the efficacy of gear reductions as an entanglement 
mitigation strategy during 2019 and 2020 in the highly valuable Dungeness crab fishery (Washington State, USA) 
in terms of changes in the entanglement risk to protected blue and humpback whales, and in terms of economic 
consequences for the fishery. Using a combination of fishery logbooks, landings data, and whale habitat models, 
we found that in the two seasons with mandatory crab pot reductions, entanglement risk was reduced by up to 
20 % for blue whales, and 78 % for humpback whales, compared to seasons with no regulations. Spatio-temporal 
variability in the distribution of each whale species was a key factor in determining risk. Importantly, the 
conservation measure did not have a substantial negative effect on fleet-level fishery performance metrics, 
despite a reduction in fishing effort. Results indicated that a simple, fixed management strategy achieved the 
desired conservation goals in an economically sustainable way. Our findings underscore the value of carefully 
considering the dynamic nature of species’ spatial distributions and key social and economic impacts that 
together determine conservation efficacy.   

1. Introduction 

Human-wildlife conflicts are increasingly prevalent across the globe 
(Nyhus, 2016; Guerra, 2019). Climate change and recovering animal 
populations are likely exacerbating these interactions that result in 
adverse outcomes for both people and wildlife (Marshall et al., 2016; 
Ingeman et al., 2019; Abrahms, 2021). Conflicts between marine ani
mals and human uses of the ocean are especially notable because they 
can simultaneously threaten charismatic megafauna and high-value in
dustries. High-profile examples include shipping traffic effects on the 

endangered North Atlantic right whales, and the increasing abundance 
of large sharks in popular tourist areas (Kraus et al., 2005; Pirotta et al., 
2019; Chapman and McPhee, 2016; Adigun, 2015). Bycatch, defined 
here as “the unintended capture of non-target species during fishing 
operations,” is another growing human-wildlife conflict that currently 
threatens many populations of marine animals, and remains a major 
global barrier to sustainable fisheries (Lewison et al., 2014; Sims and 
Queiroz, 2016; Molina and Cooke, 2012). Bycatch of marine mammals, 
such as large whales, is one of the most significant anthropogenic threats 
to the conservation and recovery of these long-lived and low fecundity 
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animals (Avila et al., 2018; Oldach et al., 2022). Despite the clear need, 
ecologically effective and socially tenable management solutions to this 
issue are lacking. 

Bycatch is a particularly difficult conservation issue because man
agers are often placed in the unenviable position of pitting human 
livelihoods against regulatory requirements to conserve species. Com
mon solutions to mitigating marine mammal bycatch include changes in 
fishing gear and methodology, acoustic and visual deterrents, as well as 
spatio-temporal management strategies such as fishery time-area clo
sures (Senko et al., 2014; Hamilton and Baker, 2019). However, the 
dynamic and complex interactions between ecological, social and eco
nomic drivers of bycatch risk can make it difficult for managers to 
navigate the associated trade-offs. For example, changing global climate 
is driving shifts in species distributions, in many places exacerbating 
human-wildlife conflicts (Poloczanska et al., 2013; Santora et al., 2020). 
Under this new climate reality, bycatch mitigation strategies that work 
in some places and times may be inadequate or even deleterious in other 
contexts. Therefore, the best way to determine whether fisheries bycatch 
management strategies are ecologically sustainable and cost effective, is 
to rigorously evaluate their efficacy over time and under changing 
environmental conditions (Bisack and Magnusson, 2016; McIntosh 
et al., 2018). 

The Dungeness crab (Metacarcinus magister) fishery, one of the most 
valuable fisheries on the U.S. West Coast (Rasmuson, 2013), is currently 
ensnared in conflict with the conservation of protected whale species. 
Since 2014, there has been an approximately five-fold increase in 
confirmed large whale entanglements coastwide relative to historical 
averages (Saez et al., 2021; Fig. 1a). Two species of high conservation 
concern include the humpback whale (Megaptera novaeangliae) - one of 
the most frequently reported entangled species - and the endangered 
blue whale (Balaenoptera musculus), which had never been observed 
entangled until 2015 (Saez et al., 2021). Both species have been 
increasing in abundance on the West Coast (Calambokidis and Barlow, 
2020) and the Dungeness crab fishery has been implicated in most 
entanglement cases where the gear was identifiable (Saez et al., 2021). 
Since the number of licensed vessels in each of the California, Oregon 
and Washington limited entry Dungeness crab fisheries is capped, 
increased fishing effort does not explain this rise in entanglements. 
Whale entanglement risk off the U.S. West Coast is driven by the spatio- 
temporal overlap between whale foraging habitat and the Dungeness 

fishery (Samhouri et al., 2021). Peak whale abundance partially over
laps in time with Dungeness crab fishing (November–July in California, 
December–September in Washington; Calambokidis et al., 2015) and 
corresponds to the timing of the majority of reported entanglements 
(Saez et al., 2021; Oldach et al., 2022). Entanglements in fixed gear 
fisheries represented 49 % of human-related injury and mortality cases 
for large whales on the U.S. West Coast between 2015 and 2019 
(excluding ‘unidentified fishery interactions’; Carretta et al., 2021), with 
research indicating that entangled whales have a significantly lower 
resighting rate and are known to be alive for fewer years post- 
entanglement (Tackaberry et al., 2022). 

In response to increases in entanglements associated with the com
mercial Dungeness crab fishery, the Washington Department of Fish and 
Wildlife (WDFW) recently introduced a simple, fixed management 
strategy to mitigate risk of large whale entanglements: a 33 % reduction 
in the maximum number of crab pots allowed per vessel between May 
1st and September 15th (Washington Administrative Code 220-340- 
480). The choice of 33 % was driven by the need to maintain viable 
opportunities for vessels with a smaller maximum pot allocation 
(WDFW, pers. comm.). This new regulation is designed to be in place 
during peak whale abundance off the Washington coast, when entan
glement risk is presumed to be at its highest. The recent implementation 
of this management measure provides an opportunity to assess its 
ecological, social, and economic impacts early on in the management 
response process, allowing for modification of the policy if necessary. In 
this study, we used WDFW Dungeness crab logbook data, port level 
landing records, and whale habitat models to assess the efficacy of the 
new summer gear reductions as a bycatch mitigation strategy by i) 
estimating the relative change in entanglement risk to protected blue 
and humpback whales in Washington waters between years with and 
without regulations, and ii) assessing the economic consequences of the 
regulations for the fishery (on an aggregate, fleet-level). We highlight 
the importance of considering annual variability in the distribution of 
both fishing effort and the bycatch species, and accounting for fishery 
interactions with multiple bycatch species with differing behaviors and 
distribution patterns. 

2. Methods 

We used the following information to assess the effectiveness and 

Fig. 1. a) Mean monthly confirmed entanglement reports for blue and humpback whales along the U.S. West Coast between October–April and May–September 
months across two time periods: 1998–2013 and 2014–2020. Entanglement rate is calculated as the cumulative total confirmed entanglements reported across each 
month and time period combination divided by the total number of months in the time period. Only confirmed entanglements in Dungeness crab gear, other trap/pot 
gear or unidentified gear are included (data from Saez et al., 2021). b) Top Panel: maximum number of lines (connecting pots to surface buoys) in the water by month 
(calculated as the sum of the maximum allowed pots by all unique vessels that were active, i.e., submitted a logbook in Washington in each month), Center Panel: 
sum of the predicted humpback whale densities, and Bottom Panel: sum of the predicted blue whale probability of occurrence values across all grid cells in the study 
area (see Fig. 2) by month. Colored background in the time series denotes the months of May–September when whale presence is highest. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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sustainability of Washington’s new entanglement regulations: 
i) spatial estimates of changes in the density of vertical lines in the 

water, which is represented by estimates of Dungeness crab pot density 
(pots per km2); 

ii) spatial estimates of changes in whale presence and distribution 
over time, and; 

iii) estimates of fishery impacts (spatial and non-spatial). 
We focused our analyses on seven fishing seasons, which included 

five seasons before the new regulations (2014–2018), and two seasons 
with regulations (2019 and 2020). The Washington crabbing season 
typically opens on December 1st (with potential delays to protect the 
resource and/or human health), and closes on September 15th the 
following year (i.e., the 2014 crab season runs from December 2013 
through September 2014). All analyses were performed in R (R Core 
Team, 2021). 

2.1. Spatial estimates of fishing effort 

Dungeness crab is fished using cylindrical or rectangular shellfish 
pots (or traps) with each pot connected to its own surface buoy with a 
weighted rope (Washington Administrative Code 220-340-435, 220- 
340-430). Crab pots are generally deployed at even intervals, forming 
‘string’ lines of pots (Fig. 2), which can be made up of anywhere from 
just a few pots to more than a hundred. Pots can be set from near the surf 

zone up to depths of around 200 m, however the length of the rope 
connecting a pot and a surface buoy cannot be longer than what is 
necessary to compensate for tides, currents and weather (Washington 
Administrative Code 220-340-430). The most comprehensive source of 
information for spatial estimates of fishing effort (pot density) off the 
Washington coast are commercial fishery logbook records, which are 
required to be filled out and submitted by all permitted Dungeness crab 
fishing vessels (Washington Administrative Code 220-340-460). Raw 
logbook data provided by WDFW included the start and end locations of 
each ‘string’ of crab pots, the number of pots fished on each of these 
strings, and the date the pots were retrieved. We converted the start and 
end geocoordinates for each string into spatial line features. We used the 
reported pot count for each string to simulate individual pots, spaced 
evenly along each string line. Simulated pots that were reported in the 
Washington logbooks, but occurred in Oregon waters, south of the 
46◦15′N parallel, were excluded as fishing effort in Oregon waters is 
subject to Oregon licensing, pot limits and regulations, rather than those 
of Washington State. However, pots fished in Washington waters, but 
landed in Oregon ports were included, as they were subject to the 
Washington regulations. 

We overlaid the simulated pots on a 5 km resolution grid used in 
previous whale entanglement studies (Feist et al., 2021; Samhouri et al., 
2021) in order to estimate pot densities. We calculated pot density in 
each grid cell on a monthly time-step using each vessel’s pot limit based 

Fig. 2. Map of the U.S. West Coast indicating the location of the study area (in blue) off Washington. Dotted line denotes 200 m depth contour. Solid black lines on 
the map denote fictional Dungeness crab string lines (lines of crab pots), with insert (not to scale) showing a line of pots and the ropes connecting them to surface 
buoys. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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on their Washington state fishing license. There are two license cate
gories in the coastal Washington Dungeness crab fishery that allow the 
holder to fish either a maximum of 300 or 500 pots (Washington 
Administrative Code 220-340-430). We assumed that each vessel sub
mitting logbook records used the maximum number of pots allowed by 
their license throughout each monthly interval (cf. Oregon Department 
of Fish and Wildlife, 2021; Free et al., in prep.), and therefore weighted 
the simulated pots accordingly. For example, if a vessel in the 500-pot 
license category reported a total of 1000 pots in a month in their 
logbook, we knew that at any given time there could only have been 500 
pots out in the water. To avoid overestimating the number of pots in the 
water, we down-weighted the pots as 500/1000 = 0.5 (i.e., each re
ported pot was worth half a pot). This assumption likely overestimates 
fishing effort in instances when vessel operators do not have their full 
allotted number of pots in the water. However, anecdotal information 
suggests that vessel operators aim to fish the maximum number of pots 
possible throughout the season (WDFW, pers. comm.). In months when 
the 33 % gear reduction was in place, the maximum allowed 200 and 
330 pots were assumed fished by 300 and 500 license category vessels, 
respectively. Pot density was then calculated as the total number of pots 
per unit area in each grid cell. 

To examine the temporal patterns in fishing effort, we estimated the 
maximum number of lines in the water in each month as the sum of the 
maximum pot limits (adjusted for summer regulations in 2019 and 
2020) of all unique vessels that submitted logbooks in that month. 
Additionally, we used the Harrell-Davis quantile estimator of the ‘WRS2’ 
package (Mair and Wilcox, 2020) to investigate changes in pot densities 
between pre- and post-regulation seasons. Since the gear reduction rule 
in 2019 was implemented only on July 1st by emergency rule (due to 
delays in implementing the permanent rule), all comparisons between 
pre-regulation seasons and 2019 were done across July–September, 
while all comparisons between pre-regulation seasons and 2020 were 
done across May–September. 

A fully detailed description of the above methods for processing 
logbook data can be found in Supplementary Materials 1. 

2.2. Spatial estimates of whale presence and distribution 

Predicted spatial estimates of whale presence and distribution were 
derived from habitat models that estimate the density of humpback 
whales (Forney et al., 2020; Forney et al., in prep.) and the probability of 
occurrence of blue whales (Abrahms et al., 2019). Both whale models 
have previously been validated against independent datasets, including 
localized aerial surveys, shipboard marine mammal surveys and stan
dardized whale-watching data (Abrahms et al., 2019; Forney et al., 
2020; Forney et al., in prep.). Following methods in Samhouri et al., 
2021, we overlaid the predictions from the blue and humpback whale 
habitat models onto the 5 km grid used to estimate pot densities from 
logbook data. Further details about the whale models can be found in 
Supplementary Materials 2 and 3. 

Since both whale model outputs extend beyond the likely Washing
ton Dungeness crab fishing grounds, we focused our analyses of the 
whale models to a smaller study area (Fig. 2). This study area is limited 
in the east by the coastline, in the south by the Washington and Oregon 
border, and in the north and the west by the maximum extent where 
Dungeness crab fishery has occurred based on the logbook data. To 
showcase the seasonally variable presence of blue and humpback whales 
in Washington waters, we summed the modeled whale values across all 
grid cells within the study area on a monthly time step. We used the 
Harrell-Davis quantile estimator to examine changes in the modeled 
whale densities and occurrence within the study area between pre- and 
post-regulation seasons. 

2.3. Estimating the impact of new regulations on entanglement risk 

To quantify how the summer gear reduction affected the risk of 

entanglement for protected blue and humpback whales, we constructed 
a simple overlap risk metric based on the overlap of fishing effort and the 
whales. Following Samhouri et al. (2021), we estimated risk RS,i,y,m to 
each whale species S based on their co-occurrence with the Washington 
Dungeness crab fishery effort in each 5 km grid cell i in each crab fishing 
season (or year) y and month m as the product of pot density Fi,y,m and 
either the predicted probability of occurrence (blue whales, Wb,i,y,m) or 
density (humpback whales, Wh,i,y,m), such that 

RS,i,y,m = Fi,y,m x WS,i,y,m (1) 

This approach assumes that risk increases linearly as whale density/ 
occurrence and pot densities increase, which is a commonly utilized 
assumption in various risk assessment studies (e.g., Redfern et al., 2020; 
Samhouri et al., 2021; Womersley et al., 2022). Here, we have also made 
this assumption in lieu of any established, empirical relationship be
tween whale density, fishing effort, and entanglement risk. Each of WS,i, 

y,m and Fi,y,m were normalized to the scale of 0–1 by subtracting the 
minimum value and dividing by the range of values across all months 
and grid cells within the study area. As the fishery footprint moves in 
space and changes in shape and size between seasons, to keep the risk 
estimates comparable between seasons, we summed all risk values (RS,i, 

y,m) across all grid cells within the study area to gain one estimate of risk 
per month for each whale species. The risk metric is not a measure of 
absolute risk of entanglement, but rather allows us to measure the 
relative change in risk between pre- and post-regulation seasons. The 
percent change in risk was calculated using the mean across all summer 
months of the pre-regulation seasons, and the mean of the summer 
months in each of the post-regulation seasons. We used Generalized 
Linear Models (GLMs), with a Gaussian error distribution and identity 
link function, to statistically compare pre- and post-regulation seasons. 
In the GLMs risk was the response variable, and the two predictor var
iables were whether a season was a pre- or a post-regulation season, and 
month. 

To parse the relative influence of the amount and distribution of (i) 
fishing effort, and (ii) whale presence on the risk metric, we also tested 
two hypothetical scenarios (Table 1). In the ‘static whale distribution’ 
scenario, we held whale distribution static, as either the 2019 or 2020 
distribution, and used that together with variable fishing effort (as 
estimated from logbooks for each year) to recalculate risk. This hypo
thetical scenario allowed for an investigation of the marginal effect of 
fishing effort change (gear reduction) on entanglement risk, while 
holding whale distribution constant. Conversely, in the ‘static fishing 
effort’ scenario, we held fishing effort static, as estimated for 2019 or 
2020 with the 33 % gear reduction, and used that together with dynamic 
whale distributions (as predicted by the whale models for each year) to 
recalculate risk. We used this hypothetical scenario to investigate the 
marginal effect of changing whale distributions on entanglement risk, 
while holding fishing effort constant. 

To investigate how inter-annual variability in whale distribution, 
specifically in ‘whale hotspots’, affected risk, we constructed a whale 
habitat risk metric. This complimentary risk metric allowed us to 
examine the gear reduction strategy from a conservation triage 
perspective. While entanglements are rare events, we assume that they 
are slightly less rare in areas with more whales, and the summer gear 
reduction rule could have inadvertently caused fishing effort to shift into 
areas with higher densities or likelihood of whale presence. Because of 
differences in the structure of the two whale models, we defined most 
likely whale habitat separately for the two species: for blue whales, we 
chose all grid cells with a predicted probability of occurrence greater 
than the mean across all summer months; and for humpback whales, we 
chose all grid cells in the top 25th percentile of predicted density across 
all summer months (see Supplementary Material 2 and 3). We conducted 
sensitivity analyses around the cutoff values used to define most likely 
whale habitats (see Supplementary Material 2 and 3). Risk was calcu
lated essentially in the same manner as above, as a summed product of 
the whale and pot density data, but we only calculated one risk value per 
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season rather than per month. We also measured the amount of overlap 
between the most likely whale habitats and the fishery in each summer 
season as the number of overlapping grid cells. 

2.4. Consequences of the new regulations for the Washington Dungeness 
crab fishery 

We estimated changes in the spatial distribution of fishing effort in 
the Washington Dungeness crab fishery by mapping the pooled fishery 
footprint across winter (December–April) vs. summer (May–September) 
months across all years (i.e., grid cells that had fishing effort in any of 
the winter or summer months in any year). In order to make compari
sons between pre- and post-regulation seasons, we also measured the 
size of summer fishery footprints (in km2) as the summed area of all grid 
cells that had fishing effort in a given season. 

We quantified the economic impact that the summer gear reduction 
rule had on the Washington Dungeness crab fishery by joining logbook 
records to the Pacific Fisheries Information Network (PacFin) database 
of landing receipts (or fish tickets; Washington Administrative Code 
220-352-020) based on each individual vessel’s unique identification 
number, and the date of landing. The PacFin landing receipts describe 
the catch, revenue, and other characteristics associated with vessels 
landing crab on the U.S. West Coast. We used these logbook-matched 
fish tickets to calculate total landings (dollars and pounds) and catch 
per unit effort for all pre- and post-regulation summer seasons, as well as 
total number of unique vessels and mean monthly revenue per vessel for 
both the 300 and 500 pot license categories. All dollar values were 
adjusted to 2014 dollars1 in order to facilitate comparison. Percent 
change in the above metrics was calculated from the median of the pre- 
regulation seasons, and we used GLMs to statistically compare pre- and 
post-regulation seasons. 

3. Results 

3.1. General patterns in the Washington Dungeness crab fishery 

The Washington Dungeness crab fishery operates as a derby, with 

most effort (including the highest number of lines in the water) occur
ring in the first few months of the season, and the least occurring be
tween May and September (Fig. 1b). Based on logbook data, the fishery 
effort contracted towards the coast each year during the summer period, 
occupying a smaller area in shallower waters compared to the winter 
period (Supplementary Fig. S4.1). In some seasons, this contraction 
resulted in a concentration of effort, and therefore an increase in pot 
densities at the end of the season (Supplementary Fig. S4.2). The size of 
the summer fishery footprint (km2) varied from year-to-year (from 
<1000 km2 to >4000 km2), but was similar between seasons with and 
without summer pot regulations (Supplementary Fig. S4.1). Pot den
sities were highest near the coast (within ~10 km off the coast) espe
cially between Grays Harbor and Columbia River, with lower pot 
densities occurring in the fringes of the fishery footprint both in the 
winter and summer portions of the fishing season (maps of data not 
shown due to confidentiality restrictions). 

3.2. Simple overlap risk metric: pre-regulation vs. post-regulation seasons 

There was a 78 % and a 51 % reduction in the mean risk to humpback 
whales from pre-regulation seasons to 2019 and to 2020, respectively 
(Table 1, Fig. 3a). The ‘pre/post-regulation’ variable was a statistically 
significant predictor of risk in both comparisons (p < 0.05, Supple
mentary Material 5). For blue whales, there was a 12 % and a 20 % 
reduction in the mean risk from pre-regulation seasons to 2019 and to 
2020, respectively (Table 1, Fig. 3b), however the ‘pre/post-regulation’ 
variable was not a statistically significant predictor of risk in either 
comparison (p > 0.05, Supplementary Material 5). (Similar qualitative 
conclusions (significant reduction in risk to humpback whales, non- 
significant reduction to blue whales) were also drawn in a complimen
tary analysis, whereby we only looked at July–September months across 
all the pre- and post-regulation years; unpublished results). 

3.3. Influence of whale distributions on the risk metric 

To investigate the influence of whale distributions on the simple 
overlap risk metric, we examined changes in the modeled blue and 
humpback whale distributions within the study area between pre- and 
post-regulation seasons. Modeled humpback whale densities were 
significantly lower in all quartiles in July–September of 2019 than in the 
pre-regulation seasons (Fig. 4a; p = 0, Supplementary Material 6). For 

Table 1 
Table showcasing what fishing data and what whale data were used to calculate the risk metric in different scenarios. In the hypothetical scenarios, either fishing effort 
data or whale data were held constant to gauge the relative impact that the variation in fishing effort or in whale data had on the risk metric. Comparisons between pre- 
regulation seasons (2014–2018) and 2019 are across July–September, comparisons between pre-regulation seasons and 2020 are across May–September. HW =
humpback whales, BW = blue whales. Bolded values indicate cases where the ‘pre/post-regulation’ variable was a statistically significant predictor of risk.  

Scenario Scenario interpretation Fishing data used Whale data used Results (change in 
risk from pre- 
regulations) 

Simple overlap 
risk metric 

How did risk change from pre-regulation seasons to 
2019 and 2020? 

Amount and distribution of fishing 
effort (pot densities) estimated from 
logbooks for each year 

Distribution and density/ probability of 
occurrence of whales predicted by 
whale models for each year 

HW: 
2019: ¡78 % 
2020: ¡51 % 
BW: 
2019: − 12 % 
2020: − 20 % 

Static fishing 
effort 

How would risk have changed from pre-regulation 
seasons to 2019 and 2020, if all the pre-regulation 
seasons had had the same distribution and density of 
fishing effort as 2019 and 2020? 

Amount and distribution of fishing 
effort (pot densities) held constant as 
estimated from logbooks for 2019 
and 2020 

Distribution and density/ probability of 
occurrence of whales predicted by 
whale models for each year 

HW: 
2019: ¡70 %* 
2020: − 10 % 
BW: 
2019: þ11 % 
2020: þ24 % 

Static whale 
distribution 

How would risk have changed from pre-regulation 
seasons to 2019 and 2020, if all the pre-regulation 
seasons had had the same distribution and density of 
whales as 2019 and 2020? 

Amount and distribution of fishing 
effort (pot densities) estimated from 
logbooks for each year 

Distribution and density/ probability of 
occurrence of whales held constant as 
predicted by whale models for 2019 
and 2020 

HW: 
2019: − 23 % 
2020: ¡45 % 
BW: 
2019: − 21 % 
2020: ¡34 %  

1 https://www.minneapolisfed.org/about-us/monetary-policy/inflation-calc 
ulator/consumer-price-index-1913- 
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all other comparisons, there were statistically significant increases in 
modeled humpback whale densities and blue whale probability of 
occurrence from pre-regulation seasons to post-regulation seasons in the 
first three quartiles, but not in the fourth quartile (Fig. 4b-d; p = 0, 
Supplementary Material 6). 

We further examined the relative influence of inter-annual vari
ability in the whale data on the risk metric through a hypothetical ‘static 
fishing effort’ scenario (Table 1, Fig. 3). In this scenario (where fishing 
effort was held constant, but whale data were varied), there was a 70 % 
reduction in the mean risk to humpback whales from pre-regulation 
seasons to 2019 (p < 0.001, Supplementary Material 7), and a 10 % 
reduction from pre-regulation seasons to 2020 (p = 0.39, Supplemen
tary Material 7). This scenario also revealed an 11 % increase in the 
mean risk to blue whales from pre-regulation seasons to 2019 (p = 0.04, 
Supplementary Material 7), and a 24 % increase from pre-regulation 
seasons to 2020 (p = 0.01, Supplementary Material 7). 

3.4. Influence of fishing effort & summer regulations on the risk metric 

To investigate the influence of fishing effort and the gear reduction 
rule on the simple overlap risk metric, we examined changes in pot 
densities between pre- and post-regulation seasons. Pot densities were 
significantly lower in all quartiles in July–September of 2019 than the 
pre-regulation seasons and in all quartiles in May–September of 2020 
than the pre-regulation seasons (Fig. 4e-f, p < 0.05, Supplementary 
Material 8). There was a 48 % and a 47 % reduction in the median pot 
density from pre-regulation seasons to 2019 and 2020, respectively. 

We further examined the relative influence of fishing effort and the 
gear reduction rule on the risk metric through a hypothetical ‘static 
whale distribution’ scenario (Table 1, Fig. 3). In this scenario (where 
whale data was held constant, but fishing effort was varied), there was a 
23 % reduction in the mean risk to humpback whales from pre- 

regulation seasons to 2019 (p = 0.37, Supplementary Material 9), and 
a 45 % reduction from pre-regulation seasons to 2020 (p = 0.001, 
Supplementary Material 9). There was a 21 % reduction in the mean risk 
to blue whales from pre-regulation seasons to 2019 (p = 0.26, Supple
mentary Material 9), and a 34 % reduction from pre-regulation seasons 
to 2020 (p = 0.01, Supplementary Material 9). 

3.5. Whale habitat risk metric 

To investigate how inter-annual variability in whale distribution 
(specifically ‘whale hotspots’) affected risk, we constructed a whale 
habitat risk metric. There was a large (99.6 %) reduction in risk in the 
most likely humpback whale habitat from the pre-regulations average to 
2019 (Fig. 5a; Supplementary Table S3.1). This was accompanied by a 
similarly large reduction (93 %) in the overlap between most likely 
humpback whale habitat and the Washington Dungeness crab fishery. 
There was a 67 % reduction in risk from the pre-regulations average to 
2020, but only a 33 % reduction in the overlap between most likely 
humpback whale habitat and the fishery (Fig. 5a; Supplementary 
Table S3.1). We conducted sensitivity analysis by testing multiple values 
as the cutoff points for our definition of most likely humpback whale 
habitat. The sensitivity analysis produced similar results for both com
parisons regardless of the cutoff value used (Supplementary Fig. S3.2). 
The ‘pre/post-regulation’ variable was a significant predictor of risk, as 
well as of the amount of overlap between most likely humpback whale 
habitat and the fishery for both comparisons (p < 0.05, Supplementary 
Table S3.2). The cutoff value used to define the most likely humpback 
whale habitat was generally not a significant predictor of risk or the 
amount of overlap, with the only significant difference occurring be
tween the lowest and highest threshold values (i.e., the least and most 
conservative definitions of most likely humpback whale habitat; Sup
plementary Table S3.2). 

Fig. 3. Percent change in risk to a) humpback whales and b) blue whales between pre-regulation (2014–2018) and post-regulation (2019 and 2020) seasons in 
different risk estimation scenarios. Comparisons between pre-regulation seasons and 2019 are across July–September, comparisons between pre-regulation seasons 
and 2020 are across May–September. Stars indicate comparisons where the ‘pre/post-regulation’ variable was a statistically significant predictor of risk. For de
scriptions and further results of the different scenarios see Table 1, and Supplementary Materials 5, 7, 9. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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For blue whales, there was a large increase in the overlap between 
most likely blue whale habitat and the fishery (72 % and 120 % increase 
from pre-regulations average to 2019 and 2020, respectively; Fig. 5b; 
Supplementary Table S2.3). This increase in overlap resulted in a 39 % 
and a 44 % increase in risk from the pre-regulations average to 2019 and 
2020, respectively. The sensitivity analysis produced similar results for 
both comparisons regardless of the cutoff value used to define most 
likely blue whale habitat (Supplementary Fig. S2.3). The ‘pre/post- 
regulation’ variable was not a significant predictor of risk (p > 0.05), 
and it was a significant predictor of the amount of overlap between most 
likely blue whale habitat and the fishery only in the 2019 comparison (p 
= 0.04; p = 0.09 in the 2020 comparison, Supplementary Table S2.4). 
The cutoff value used to define the most likely blue whale habitat was a 
significant predictor of risk and the amount of overlap between most 
likely blue whale habitat and the fishery in some comparisons (Sup
plementary Table S2.4). 

3.6. Consequences of summer regulations for the Washington Dungeness 
crab fishery 

The total summer season revenue, landings and CPUE metrics were 
variable across years. There was a 16 % increase in the total summer 
revenue, and an 18 % increase in the total landings from the pre- 
regulation seasons’ median to 2019 (Fig. 6a-b). There was a 6 % 
decrease in the total summer revenue, and a 0 % change in the total 
landings from the pre-regulation seasons’ median to 2020 (Fig. 6a-b). 
However, the ‘pre/post-regulation’ variable was not a significant pre
dictor of either revenue or landings in any of the comparisons (p > 0.05, 
Supplementary Table S10.1). There was a 22 % decrease in the mean 
dollars per pot and a 13 % decrease in the mean pounds of crab per pot 
between the pre-regulation seasons’ median and 2019 (Fig. 6c-d). There 
was an 18 % increase in the mean dollars per pot and a 25 % increase in 
the mean pounds of crab per pot between the pre-regulation seasons’ 
median and 2020 (Fig. 6c-d). However, the ‘pre/post-regulation’ vari
able was not a significant predictor of either CPUE metric in any of the 
comparisons (p > 0.05, Supplementary Table S10.2). The level of 
participation in the fishery was variable across months and seasons, 
however it was similar between years with and without summer gear 
regulations (Fig. 7a). For those vessels that were participating in the 
fishery (i.e., submitted logbooks), the mean monthly revenue per vessel 
did not differ significantly between pre- and post-regulation seasons 
(Fig. 7b, Supplementary Table S10.3). 

4. Discussion 

The incidental catch of non-target species in fisheries, exemplified by 
whale entanglements, can threaten bycatch species population viability, 
as well as the long-term sustainability of the associated fishery. Bycatch 
problems are likely to increase as climate-driven shifts in the distribu
tions of historically-depleted but now recovering species collide with the 
changing and increasing opportunities for human ocean users (Ingeman 
et al., 2019; Carretta et al., 2020). Long-lasting solutions to this problem 
must be robust to temporal variability in ecological dynamics (Lewison 
et al., 2015; Pons et al., 2022) while also addressing socio-cultural and 
economic concerns. Here, based on this assessment of a recently- 
implemented management strategy, we found that gear reductions in 
the Washington Dungeness crab fishery during the period of greatest 
whale presence decreased the risk of entanglements for blue and 
humpback whales with no detectable economic consequences for the 

fishery. 
Although many fisheries interact with multiple bycatch species, 

studies often tend to focus on reducing bycatch for one species at a time 
(Brillant and Trippel, 2010; Ortiz et al., 2016; Virgili et al., 2018; Savoca 
et al., 2020), even though mitigation strategies may not necessarily have 
equivalent ecological consequences for all species (Wakefield et al., 
2017; Hamilton and Baker, 2019). In our study, we found important 
heterogeneous impacts of summer gear reduction in the crab fishery on 
humpback and blue whales. For humpback whales, in the two seasons 
with entanglement risk reduction measures, there was a large and sig
nificant reduction in entanglement risk (Fig. 3a) for two different rea
sons. In 2020, reduced risk to humpback whales resulted from reduced 
crab fishing effort (gear reduction; Figs. 3a, 4b), whereas in 2019 
reduced entanglement risk was driven by low modeled humpback whale 
densities (Fig. 4a). The predicted lower densities of humpback whales in 
2019 were likely due to the occurrence of a marine heatwave off 
Washington in that year (Amaya et al., 2020; Weber et al., 2021). 
Therefore, our findings highlight how environmentally-driven vari
ability in species’ distributions can have large impacts on risk assess
ment, and how overlooking such variability could lead to incorrect 
attribution of causality in relation to new management actions. It also 
highlights the potential for application of “dynamic ocean management” 
strategies, intended to adjust rapidly as environmental, biological, or 
socioeconomic conditions change (Lewison et al., 2015; Hazen et al., 
2018; Pons et al., 2022). In this case, it could be that different fisheries 
management actions could have been applied with equivalent success in 
2019 and 2020 based on evolving ecosystem conditions, rather than 
using a fixed management schedule decided upon prior to the start of the 
fishing season. 

We found that gear reduction resulted in a smaller (statistically non- 
significant) reduction in risk to blue whales compared to humpback 
whales (Fig. 3). This effect was not due to lower modeled probability of 
blue whale occurrence in 2019 and 2020 compared to pre-regulation 
seasons. Rather, we observed a reduction in risk for blue whales 
despite an increasing occurrence and overlap (Figs. 4c-d, 5b), implying 
that the gear reduction management strategy reduced entanglement risk 
to blue whales. In this case, protection measures that were highly 
effective for one species (humpback whales) seemed to serve as an 
umbrella for another (blue whales), but multispecies management may 
not always follow this pattern (Simberloff, 1998; Mace et al., 2007; 
Redfern et al., 2020). It remains unclear whether gear reduction will 
work equally well for all species reported as entangled in Dungeness 
crab fishing gear, such as killer whales (Orcinus orca) and gray whales 
(Eschrichtius robustus; Saez et al., 2021; NOAA Fisheries, 2022), or in 
other locations. Additionally, we acknowledge that a better under
standing of the exact relationship between increasing bycatch species 
presence, fishery effort and risk is still needed to identify any potential 
thresholds (Supplementary Fig. S5.1). 

In addition to this complex array of ecological considerations, 
bycatch mitigation measures can also result in economic losses (Smith 
et al., 2020; Seary et al., 2022). However, we found that the new gear 
reduction regulation did not have a statistically significant effect on 
fishery performance metrics, including the total amount of crab landed, 
total fishery revenue, or CPUE metrics (Figs. 6, 7; Supplementary Ma
terials 4, 10). Similar total revenue and landings as in pre-regulation 
seasons were likely a result of high fishery participation levels in 2019 
(Fig. 7a, Supplementary Fig. S4.3), despite slightly, but not significantly, 
lower CPUE metrics (Fig. 6c-d). We cannot eliminate the possibility that 
high CPUE levels in 2020 (Fig. 6c-d) were due to, for example, high crab 

Fig. 4. Density plots of modeled humpback whale densities in the study area in a) July–September of pre-regulation seasons (2014–2018) vs. 2019, and b) 
May–September of pre-regulation seasons vs. 2020; density plots of modeled blue whale probability of occurrences in the study area in c) July–September of pre- 
regulation seasons vs. 2019, and d) May–September of pre-regulation seasons vs. 2020; and density plots of pot densities (pots/km2) in e) July–September of pre- 
regulation seasons vs. 2019, and f) May–September of pre-regulation seasons vs. 2020. The position of quartiles calculated from the data are shown with different 
colors. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

L. Riekkola et al.                                                                                                                                                                                                                                



Biological Conservation 278 (2023) 109880

9

(caption on next page) 

L. Riekkola et al.                                                                                                                                                                                                                                



Biological Conservation 278 (2023) 109880

10

abundance, because there are no data yet available to evaluate this 
possibility (Richerson et al., 2020). Alternatively, CPUE levels may have 
been higher because somewhat fewer vessels participated in the fishery 
in 2020 compared to pre-regulation seasons (Fig. 7a, Supplementary 
Fig. S4.3), possibly allowing each individual vessel to catch more crab. 
In addition to fishing fleet and crab population size, the fishery perfor
mance metrics will also be influenced by where the crabs are distributed 
in relation to the fishery effort, and the market price for crab. Overall, 
our analyses from the first two years following implementation of whale 
bycatch mitigation measures in the Washington crab fishery indicate 
movement in the direction of desired ecological and economic 
outcomes. 

Given we observed interannual variability in underlying drivers of 
whale risk and in crab fishery revenue, and given other species with 
different distribution patterns and behaviors are also incidentally caught 
in this fishery, it remains unclear how robust the current fixed man
agement strategy used in Washington will be over long term. Therefore, 
there is value in comparing dynamic and fixed management solutions 

via an ecosystem management strategy evaluation (MSE; Punt et al., 
2016; Kaplan et al., 2021). An ecosystem MSE would help identify 
management approaches tailored to obtain the most cost-effective so
lution for the greatest number of bycatch species. An ecosystem MSE 
could also assess the relative value of various sources of information (e. 
g., whale sightings data, entanglement reports, vessel fishing locations, 
fisher knowledge/individual behavior) that could be used to monitor 
and evaluate entanglement risk and fishery impacts. Studies on the value 
of information are increasingly used to provide proactive recommen
dations on cost-effective strategies for addressing resource management 
issues under uncertainty (e.g., Essington et al., 2018; Davis et al., 2019; 
Stier et al., 2022), and are a key element of adaptive management 
embodied in integrated ecosystem assessment approaches (Levin et al., 
2009). 

Applications of ecosystem MSEs are relatively uncommon in a con
servation context, though they could provide integrative evaluations of 
ecological and social impacts of the new regulations, such as shifts in 
fishing effort, reduced catch of target species, and economic impacts to 

Fig. 5. a) Risk to humpback whales in the most likely humpback whale habitat (top panel) and the overlap (number of grid cells) between Washington Dungeness 
crab fishery and the most likely humpback whale habitat (center panel) in each season. Bottom panel: maps of most likely humpback whale habitat in May–Sep
tember (in blue) when using 75th percentile density value (central value of the sensitivity testing) as the cutoff for defining most likely humpback whale habitat. b) 
Risk to blue whales in the most likely blue whale habitat (top panel) and the overlap between Washington Dungeness crab fishery and the most likely blue whale 
habitat (center panel) in each season. Bottom panel: maps of most likely blue whale habitat in May–September (in blue) when using 0.469 probability of occurrence 
value (central value of the sensitivity testing) as the cutoff value for defining most likely blue whale habitat (note that the northern extent of the blue whale model 
predictions are limited to the ROMS extent, see Supplementary Materials 2 for details). Details on the definition of most likely whale habitat is provided in Methods 
(Section 2.3) and in Supplementary Materials 2 and 3. Green area in all maps shows pooled non-confidential fishery footprint in May–September across all 
2014–2020 seasons (due to confidentiality restrictions grid cells containing data from two or fewer fishing vessels across the pooled time period are not displayed). 
Actual fishery footprints of each season were used in the analyses. Only May–September maps are shown, however they are visually similar to the July–September 
period. In the time series plots, July–September comparisons are for pre-regulation seasons (2014–2018) vs. 2019, May–September comparisons are for pre- 
regulation seasons vs. 2020. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. a) Total revenue (dollars), b) total landings (pounds of crab landed), c) mean dollars per pot, and d) mean pounds of crab per pot based on landing receipts 
matched to logbook effort within Washington waters. Vertical dotted line separates pre- and post-regulation seasons. Black lines denote July–September months 
(comparing pre-regulation seasons to 2019), and gray lines denote May–September months (comparing pre-regulation seasons to 2020). Horizontal dashed lines in 
plots represent pre-regulation median values. The 2014 summer season had exceptionally high revenue and landings prior to the Washington Department of Fish and 
Wildlife (WDFW) introducing a weekly landing limit (see Supplementary Material 10). 
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fishing fleets (O’Keefe et al., 2014; Bisack and Magnusson, 2016). 
Similar to fisheries responding to climate shocks, there can be unantic
ipated results of bycatch mitigation strategies (i.e., ‘policy shocks’), such 
as shifts in fishery effort and even spillover to other fisheries (Fisher 
et al., 2021; Cole et al., 2021; Papaioannou et al., 2021). While we did 
not explore these possibilities in the current study, it is worth consid
ering the ripple effects of management strategies in one fishery towards 
other fisheries. For example, imposing certain management actions 
might lower the entanglement risk by the Dungeness crab fishery, while 
simultaneously increasing the risk by other fisheries due to spillover of 
effort. Furthermore, bycatch mitigation strategies may have inequitable 
impacts on different elements of a fishery, given that, for example, in the 
California Dungeness crab fishery smaller vessels have generally been 
found to experience more adverse effects from changes to scheduled 
fishing regulations (Jardine et al., 2020; Fisher et al., 2021). Therefore, 
actions such as gear reductions could have larger economic impacts on 
smaller vessels with lower gear allotments (Free et al., in prep.). While 
we did not see obvious adverse effects on aggregate measures of sub- 
groups (i.e., license categories) of the fishery (Fig. 6), fully assessing 
this potential impact was beyond the scope of our work. Additionally, 
regulations relating to the COVID-19 pandemic may have had com
pounding effects, given we found that the overall participation in the 
fishery was slightly lower in 2020 than in pre-regulations seasons 
(Supplementary Fig. S10.1). Such compounding effects may extend 
beyond fishery participants to associated fishery-dependent coastal 
communities (Moore et al., 2019). While feedback from fishers and their 
communities was not available here (WDFW, pers. comm.), such infor
mation might be valuable in guiding the development and refinement of 
new management measures. 

Consideration of individual and compounding effects of new regu
lations on crab fishery participants and fishing communities may also 
benefit from evaluation of the potential for new fishing gear innovations 
designed to reduce marine megafauna entanglements. These include 
technologies that leverage sensory capabilities such as illuminated 
fishery gear, which have been successful in reducing bycatch in gillnets, 
while still maintaining target species catch rates (Mangel et al., 2018; 
Senko et al., 2022). However, assessments on the effectiveness of gear 
illumination have so far focused on net-based fisheries, and further 
research is still needed to assess the responses of different whale species 
to varying rope colour (Kot et al., 2012; Kraus et al., 2014; How et al., 
2015; Hamilton and Baker, 2019). Alternatively, variations of ropeless 
or pop-up gear (e.g., inflatable bags or bottom-stored ropes that surface 
only during expected fishing activity, Lebon and Kelly, 2019), would 
reduce or eliminate the amount of time vertical lines associated with pot 
gear would spend in the water. However, the challenges associated with 
widespread adoption of ropeless or pop-up gear include high costs for 
both managers and the fleet, reliability and/or compatibility of technical 
components across manufacturers and systems, and the complex com
bination of policy, management, and enforcement considerations that 
must be addressed to ensure compliance and achievement of fishery 
management goals (Myers et al., 2019; Stevens, 2021). 

In conclusion, we found that substantial variability in year-to-year 
fishing effort and especially whale distributions altered the risk land
scape, but the conservation intervention was effective across this vari
ability. We encourage comparison of the current approach to more 
dynamic management strategies that account for interannual changes 
and interspecific differences in entanglement risk. Dynamic entangle
ment management strategies may be especially relevant if climate 

Fig. 7. a) Number of active vessels (unique vessels 
operating in Washington waters that submitted log
books) by license category (‘300’ or ‘500’, indicating 
the maximum allowed number of pots by a vessel) in 
pre-regulation seasons (2014–2018) vs. 2019 and 
2020. Data for 2019 is not shown for May and June as 
regulations only came into effect in July of 2019. b) 
Mean monthly revenue (dollars) by vessel and by li
cense category in pre-regulation seasons vs. 2019 and 
2020. Comparisons between pre-regulation seasons 
and 2019 are across July–September, comparisons 
between pre-regulation seasons and 2020 are across 
May–September. The highest mean revenue per vessel 
values were driven by the 2014 season, with excep
tionally high catches and revenue (see Supplementary 
Material 10).   
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change triggers shifts in crab fishing and/or whale distributions that 
increase their overlap and therefore the risk of entanglement. While 
dynamic management can be data-intensive, costly to implement, and 
difficult to enforce (Lewison et al., 2015; Maxwell et al., 2015), these 
factors can sometimes be mitigated through appropriate incentive 
schemes (e.g., Squires et al., 2021), or in cases where robust occurrence 
models for bycatch species exist (such as the U.S. West Coast). In com
parison, fixed but proactive management may have fewer of these 
drawbacks and be effective when ecological and social uses are more 
consistent and predictable (Vanderlaan and Taggart, 2007, 2009; Red
fern et al., 2020). Fisheries bycatch is a global issue, and while there may 
not be a universal solution, it is clear that data- and model-informed 
approaches to evaluating impacts of management interventions in 
relation to societal values offer a promising path forward towards social 
and ecological sustainability (Senko et al., 2014; Hamilton and Baker, 
2019). 
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