
1. Introduction
Anthropogenic climate change is leading to simultaneous warming, deoxygenation, and acidification stress on 
marine ecosystems (Bopp et al., 2013; Doney et al., 2009; Kwiatkowski et al., 2020). The North Pacific Ocean 
is particularly vulnerable to the effects of ocean acidification and deoxygenation, owing to the naturally high 
concentrations of dissolved inorganic carbon (DIC) and naturally low oxygen concentrations that occur here 
(Keeling et al., 2010; Levin, 2018; Ono et al., 2019). On top of these long-term changes in ocean state are short-
term extreme events defined by rapid disruptions such as marine heatwaves, which also likely have biogeochem-
ical signatures (Bopp et al., 2013; Frölicher & Laufkötter, 2018). The North Pacific is thus especially threatened 
by these ecosystem multi-stressor or compound extreme events.

A strong marine heatwave known as “the Blob” appeared in the open Gulf of Alaska (GOA) in the winter of 
2013–2014, driven by an anomalous high pressure ridge (Bif et  al.,  2019; Bond et  al.,  2015; Di Lorenzo & 

Abstract The Blob was the early manifestation of the Northeast Pacific marine heat wave from 2013 
to 2016. While the upper ocean temperature in the Blob has been well described, the impacts on marine 
biogeochemistry have not been fully studied. Here, we characterize and develop understanding of Eastern North 
Pacific upper ocean biogeochemical properties during the Winter of 2013–2014 using in situ observations, 
an observation-based product, and reconstructions from a collection of ocean models. We find that the Blob 
is associated with significant upper ocean biogeochemical anomalies: A 5% increase in aragonite saturation 
state (temporary reprieve of ocean acidification) and a 3% decrease in oxygen concentration (enhanced 
deoxygenation). Anomalous advection and mixing drive the aragonite saturation anomaly, while anomalous 
heating and air-sea gas exchange drive the oxygen anomaly. Marine heatwaves do not necessarily serve as an 
analog for future change as they may enhance or mitigate long-term trends.

Plain Language Summary The global ocean is experiencing major changes due to human-made 
carbon emissions and climate change, leading to a warming ocean with increasing acidity and declining oxygen. 
On top of these long-term changes in the ocean are short-term extreme events, such as marine heatwaves. 
These extreme events quickly change the ocean state and can stress marine ecosystems in multiple ways. The 
Northeast Pacific marine heat wave (2013–2016) was one such marine heatwave. Here we focus on the early 
portion of this marine heatwave, called the Blob. While the ocean temperature changes during the event are 
well understood, the effects on ocean biogeochemistry have not been fully examined. In this study, we use an 
earth system model that accurately simulates the Blob to examine short-term changes in oxygen and acidity. 
We find that the warming signal leads to a decline in the effects of ocean acidification, mainly due to changes 
in the movement of carbon, and lowers the amount of oxygen, due primarily to temperature-driven effects. 
These results suggest that some effects of climate change may be exacerbated (warming) or mitigated (ocean 
acidification) by marine heatwaves.
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Mantua, 2016). The anomalous high pressure system was associated with a significant decline in local wind 
speed, decreasing the mixing of deep, cold waters to the surface and raising sea surface temperatures (Bond 
et  al.,  2015; Scannell et  al.,  2020). Di Lorenzo and Mantua  (2016) proposed that the initial manifestation of 
the Blob (winter 2014) mapped onto the pattern of the North Pacific Gyre Oscillation (NGPGO; Di Lorenzo 
et al., 2008) in the open Gulf of Alaska (GOA) and transitioned to a Pacifical Decadal Oscilliation (PDO)-like 
pattern in the winter of 2015 due to tropical and extra-tropical teleconnections related to El Niño-Southern 
Oscillation (PDO; Mantua et al., 1997). This climatic transition transformed the strong marine heatwave from a 
circle-like manifestation in the open Gulf of Alaska (GOA) (the Blob) to an arc-shaped pattern along the coast 
that intersected with the California Current System (Di Lorenzo & Mantua, 2016).

While the temperature features of the marine heatwave have been well studied, only a few studies have discussed 
the associated ocean biogeochemical properties. At the basin scale, the marine heatwave has been connected to 
decreases in net community production and subarctic and subpolar transition zone productivity (Bif et al., 2019; 
Whitney,  2015), increases in particulate organic carbon concentration and net primary productivity (Long 
et al., 2021; Yu et al., 2019), and changes to northeast Pacific fish stocks (Cheung & Frölicher, 2020). Coastal 
biogeochemical impacts of the marine heatwave include anomalously low chlorophyll concentrations off the 
coast of Southern California (Jacox et  al., 2016; Kahru et  al., 2018), anomalously high surface ocean partial 
pressure of CO2 (pCO2) off the coast of Washington state (Siedlecki et al., 2016), and anomalously high aragonite 
saturation states (Ωarag) off the coast of Alaska (Siedlecki et al., 2016). While these studies suggest basin-wide 
and/or coastal impacts of the marine heatwave on individual ocean biogeochemical parameters, no study has 
comprehensively analyzed multiple biogeochemical parameters in the open GOA (the Blob), during the most 
intense temperature anomaly in the winter of 2013–2014.

Here, we characterize the biogeochemistry of the North Pacific Blob in the open GOA during the winter of 
2013–2014, at the location and time of the most intense surface temperature anomaly. We use a collection of 
ocean observations and model output to quantify carbonate chemistry and oxygen anomalies in the surface ocean 
and attribute them to anomalous physical forcing of the coupled air-sea system. Our results demonstrate that this 
region's response to the Blob was characterized by a relief of ocean acidification (i.e., anomalously high aragonite 
saturation states), but an intensification of deoxygenation.

2. Methods
2.1. Ocean Model Reconstructions

Our primary numerical tool is a historical reconstruction of the ocean physical and biogeochemical state 
generated by a Forced Ocean-Sea Ice (FOSI) configuration of the Community Earth System Model (CESM). 
Community Earth System Model (CESM) Forced Ocean-Sea Ice (FOSI) consists of coupled ocean and sea 
ice components of CESM1.1 forced with historical (1948–2017) atmospheric state and flux fields from the 
Coordinated Ocean-Ice Reference Experiment data set. This configuration of Community Earth System Model 
(CESM) has been shown to reproduce key aspects of observed ocean variability (Yeager et al., 2018). CESM1.1 
simulates the ocean at 1° × 1° resolution with 60 vertical levels using version 2 of the Parallel Ocean Program 
with an explicit rendering of marine biogeochemistry from the Biogeochemistry Elemental Cycle (BEC) model 
(Moore et al., 2001, 2004, 2013). Biogeochemistry Elemental Cycle (BEC) includes three explicit phytoplankton 
functional groups (diatoms, diazotrophs, and picophytoplankton) and one implicit group (calcifiers) along with 
one group of zooplankton (Moore et al., 2004). Biogeochemistry Elemental Cycle (BEC) also includes multiple 
nutrient limitations (N, P, Si, Fe) and a fully realized marine carbonate system (Moore et al., 2001, 2004, 2013). 
CESM Forced Ocean-Sea Ice (FOSI) produces physical and biogeochemical output on monthly timescales.

The Ocean Model Intercomparison Project (OMIP) provides experimental protocols for coupled ocean and 
sea-ice models forced with strongly constrained air-sea momentum, heat, and freshwater fluxes derived from 
atmospheric reanalysis fields (Griffies et al., 2016; Orr et al., 2017; Tsujino et al., 2020). Since the simulations 
belonging to the first phase of the Ocean Model Intercomparison Project (OMIP) Ocean Model Intercomparison 
Project (OMIP-1) end in 2009, we use a subset of models based on phase 2 (OMIP-2) that include biogeochemical 
tracers and provide output to the CMIP6 archive at monthly resolution: NorESM and MRI. OMIP2 simulations 
capture the anomalous momentum, heat, and freshwater fluxes present during the Blob period (2013–2014) 
(Griffies et al., 2016). NorESM-LM is the second generation Earth System Model developed by the Norwegian 
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Climate Center (Seland et al., 2020). We also analyzed OMIP2 output from the Meteorological Research Institute 
of Japan Earth System Model version 2.0 (MRI-ESM2.0) (Yukimoto et al., 2019). As MRI did not provide arag-
onite saturation state to the OMIP/CMIP6 archive, we calculated Ωarag by assuming a surface ocean saturation 
value ([CO2−

3 ]���,����]) of 65.0 μmol kg −1 everywhere (Sarmiento & Gruber, 2006) in Equation 1:

Ω𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

[

𝐶𝐶𝐶𝐶2−

3

]

[

𝐶𝐶𝐶𝐶2−

3

]

𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 (1)

2.2. Observations

We also examine the Blob via observations collected at Ocean Station Papa and a global observation-based 
product (OceanSODA ETHZ). Ocean Station Papa, one of over 50 moorings globally with Moored Autonomous 
pCO2 (MAPCO2) systems, has collected physical, pCO2, and oxygen data since 2007 (Emerson et  al.,  2017; 
Sutton et al., 2014, 2012). The buoy is located in the open GOA at 50.1°N, 144.9°W (x in Figure 1a), immedi-
ately adjacent to the region with the most intense surface ocean heating in the winter of 2014. We estimated total 
alkalinity (Alk) at the Papa buoy using Equation 2 from Fassbender et al. (2016),

Alk = 37 ⋅ S + 988, (2)

Figure 1. Physical and biogeochemical signatures of the Blob. Detrended anomalies in (a) sea surface temperature (SST), and (c) Ωarag in January-February 2014 
relative to a base period January-February 1985–2010 from the OceanSODA-ETHZ observation-based product. Stippling indicates statistical significance at the 
2σ level. Black box indicates the area defined by 40°–50°N and 145°–160°W. Temporal evolution of the monthly deseasoned and detrended anomalies in surface 
ocean (b) temperature, and (d) Ωarag at the Papa Buoy (x in panels a and c) over 2007–2019 from the (black) Community Earth System Model-Forced Ocean-Sea Ice 
reconstruction, (red) OceanSODA-ETHZ observation-based product, (blue) Papa buoy at monthly resolution, (light blue) Papa buoy at 3 hourly resolution (nearest grid 
cell in both gridded products). Gray shading indicates the 2013–2016 blob period, and gray vertical line indicates the peak blob intensity in the Gulf of Alaska region.
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where salinity (S) is derived from in situ buoy measurements. Estimated alkalinity and in-situ buoy pCO2 meas-
urements were used to solve the full carbonate system in PYCO2SYS, a python toolbox based on the CO2SYS 
program (Humphreys, Lewis et al., 2021). PYCO2SYS has been validated and shown to produce results similar 
to other carbonate system solvers (Humphreys, Schiller et al., 2021). PYCO2SYS estimates equilibrium constants 
based on temperature, salinity, and pressure with program default versions of all constants based on Sulpis 
et al. (2020).

OceanSODA-ETHZ was developed by interpolating surface pCO2 from the Surface Ocean CO2 Atlas (SOCAT; 
Bakker et al., 2016) and Alk from the Global Ocean Data Analysis Project (GLODAP2; Olsen et al., 2019) obser-
vations with the Geospatial Random Cluster Ensemble Regression (GRaCER) method (Gregor & Gruber, 2021). 
This product accurately reproduces the full ocean carbonate system (Gregor & Gruber, 2021).

2.3. Data Analysis

All model output was regridded to a regular 1° × 1° grid using the Climate Data Operator (Schulzweida, 2020). 
The seasonal climatology was removed from all data and a second order polynomial fit was used to detrend the 
anomalies (as atmospheric CO2 time series are approximated by a second order polynomial). The winter mani-
festation of the Blob (January-February 2014) was compared to a base period (January-February 1985–2010) to 
determine the magnitude of the anomalies. Blob signals are deemed significantly different than the base period if 
they exceed two-standard deviations (95% confidence interval for a normal distribution).

3. Results
The Blob period (2013–2016) is characterized by anomalously warm sea surface temperatures (SSTs), anom-
alously high surface ocean Ωarag and anomalously low surface oxygen concentrations in the Northeast Pacific 
Ocean (Figure 1, Figures S1 and S2 in Supporting Information S1, Table S3 in Supporting Information S1). 
These biogeochemical anomalies accompany the warm SST anomalies as the Blob evolves in space and time 
(Figures S3–S5 in Supporting Information S1). In-situ observations from the Papa buoy show the development 
of the Blob SST signature near the beginning of 2014, with a rapid increase of ∼2°C (Figure 1b). The Papa 
buoy recorded a ∼0.1 increase in Ωarag and a ∼4–5 mmol O2 m −3 decrease in oxygen concentration in late 2013 
(Figures 1d and S1 in Supporting Information S1). Unfortunately, a large gap in the buoy observational record 
precludes a quantification of the observed Ωarag anomalies in the open GOA at the peak of the Blob in the winter 
of 2013–2014 (Figures 1b–1d).

The positive Blob anomaly in surface Ωaragonite spans the full GOA during the winter of 2014, as illustrated by 
the interpolated OceanSODA ETHZ observation-based product (Figure 1c). The detrended Ωarag anomalies in 
January-February 2014 map onto the SST anomalies during the same period (cf. Figures 1a and 1c), indicating 
an important role for physical processes in driving Blob biogeochemical anomalies in the open GOA region. The 
temporal evolution of the SST and Ωarag anomalies from the OceanSODA ETHZ product display high correla-
tions with Papa buoy data over 2007–2018 and suggest that the largest anomalies in SST and Ωarag occurred in 
January-February 2014 (order 2°C and 0.1, respectively; Figures 1b–1d).

CESM FOSI accurately recreates the physical and biogeochemical signatures of the Blob as estimated by in-situ 
and interpolated observations and other ocean physical-biogeochemical models. Figures 1b–1d show that FOSI 
captures the same timeseries anomaly in both SST (∼1°C) and Ωarag (∼0.05) during the Blob period, while Figure 
S1 in Supporting Information S1 shows that the Blob-associated oxygen anomaly is well captured in comparison 
to in-situ observations (decline of ∼4–5 mmol O2 m −3). The average anomalies in surface temperature, Ωarag, and 
oxygen over the full Blob period (July 2013-June 2016) at the location of the Papa buoy are of similar magni-
tude for FOSI, the interpolated reconstruction, and the buoy data (Table S1 in Supporting Information S1). In 
the open GOA region (black box in Figure 1) during the winter of 2013–2014, the FOSI reconstruction again 
produces anomalies similar to those in the observation-based product (Table S2 in Supporting Information S1). 
The magnitude and spatial extent of the surface temperature, Ωarag, and oxygen anomalies during the winter of 
2014 are similar across the CESM FOSI, MRI OMIP2, and NorESM OMIP2 simulations (cf. Figures 2 and S6 
in Supporting Information S1), indicating that these signatures are relatively insensitive to model structure and 
forcing data set. CESM FOSI accurately recreates the evolution of the Blob as described by Di Lorenzo and 
Mantua (2016), wherein the marine heatwave begins in the open GOA before shifting to an arc-shaped pattern 
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affecting the California coast Figure S2 in Supporting Information S1). The increase in Ωarag and decline in O2 
during the early Blob in the GOA also occur during the arc-shaped phase of the Blob in the winter of 2014–2015.

What caused the temporary reprieve of ocean acidification (anomalously high Ωarag) during the winter of 2013–
2014 in the open GOA? We use output from CESM-FOSI to develop a mechanistic understanding of the posi-
tive anomaly in surface ocean Ωarag in the GOA Blob region during January-February 2014. Ωarag is equal to 
the carbonate ion concentration, (𝐴𝐴 CO

2−

3
 ), divided by the carbonate ion concentration in saturation with mineral 

aragonite, 𝐴𝐴
[

CO
2−

3

]

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (Equation 1), and determines the tendency for aragonite shells to precipitate (Ωarag > 1) 

or dissolve (Ωarag < 1). As 𝐴𝐴
[

CO
2−

3

]

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 is largely unmodified in the Blob (not shown), anomalies in Ωarag derive 

from anomalies in (𝐴𝐴 CO
2−

3
 ). We decompose the surface ocean (𝐴𝐴 CO

2−

3
 ) Blob anomalies into contributions from 

anomalies in surface temperature (T), salinity (S), salinity-normalized DIC (sDIC), salinity-normalized alkalinity 
(sAlk), and freshwater dilution (fw; see Appendix A of Lovenduski et al., 2015),

Δ
[

��2−
3

]

=
�
[

��2−
3

]

��
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�
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��2−
3
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��
Δ� + �

35
�
[

��2−
3
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����
Δ����

+ �
35

�
[

��2−
3

]

����
Δ���� +

�
[

��2−
3

]

���
Δ��,

 (3)

where the sensitivities are determined using a carbonate system solver and 
the Δ terms are the anomalies in the Blob. Results from this model decom-
position demonstrate that a reduction in surface ocean dissolved inorganic 
carbon (DIC) largely drives the temporary relief of ocean acidification in the 
open GOA during the winter of 2013–2014 (Table 1). Other drivers, includ-
ing alkalinity, SST, salinity, and freshwater dilution have smaller effects on 
the change in (𝐴𝐴 CO

2−

3
 ) in the Blob region. The (𝐴𝐴 CO

2−

3
 ) change estimated by the 

sum of the decomposed drivers successfully reproduces the modeled change 
in (𝐴𝐴 CO

2−

3
 ) (Table 1).

The Blob-related dissolved inorganic carbon (DIC) anomalies extend from 
the surface to a depth of 100 m in the open GOA during January-February 
2014 in CESM FOSI (Figure 3b), mirroring anomalies in potential temper-
ature (Figure  3a). The detrended mean anomaly profile of DIC exhibits a 
vertical gradient of ∼15 mmol m −3 in the top 100 m, with a modest amount of 
interannual variation (Figure 3b). During the winter of 2014, DIC decreases 
significantly through the upper 100  m in the open GOA box, with nearly 

Figure 2. Physical and biogeochemical signatures of the Blob in the Community Earth System Model Forced Ocean Sea Ice reconstruction. Detrended anomalies in (a) 
sea surface temperature, (b) surface Ωarag, and (c) surface dissolved oxygen in January-February 2014 relative to a base period January-February 1985–2010. Stippling 
indicates statistical significance at the 2σ level. Black box indicates the region of study for the Gulf of Alaska manifestation of the Blob.

Variable Blob—base
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����
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3
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𝜕𝜕𝜕𝜕
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�
35

�
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Δ���� 

7.36
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35

𝜕𝜕
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𝐶𝐶𝐶𝐶2−

3
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𝜕𝜕𝐴𝐴𝜕𝜕𝜕𝜕
Δ𝑠𝑠𝐴𝐴𝜕𝜕𝜕𝜕 

−1.81

�
[
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���
Δ�� 

0.002

 aΔ [𝐴𝐴 CO
2−

3
 ]calculated 5.26

 bΔ[𝐴𝐴 CO
2−

3
 ]modeled 6.22

Note. Contributions to the anomaly in surface [CO3] in the open GOA (box in 
Figure 1) during January-February 2014 relative to the base period (January-
February 1985–2010) from SST, surface salinity (S), salinity normalized DIC 
(sDIC), salinity normalized Alk (sAlk), and freshwater dilution (fw). Units are 
mmol m −3. SST, sea surface temperature.
 aThe linear sum of the contributions.  bThe modeled anomaly in (𝐴𝐴 CO

2−

3
 ).

Table 1 
Drivers of Changes in CO3
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equal declines at every depth level. Thus, to develop a clear understanding of the Blob-induced changes in DIC, 
we need to consider the integrated DIC budget in the upper 100 m and the processes that affect DIC change here.

Blob anomalies in upper ocean DIC were examined as a function of the circulation, air-sea flux, and biological 
processes that affect the rate of change of DIC in our region of study (Figure 4a) using the following equation,

����
��

= Φbiology + Air Sea Flux + Circulation Tendency, (4)

where ����
��

 is saved at model run time, Φbiology represents the flux of carbon into/out of the Blob box driven by 
organic matter production and remineralization, the air-sea flux captures changes in upper ocean DIC driven by 
gas exchange, and the circulation tendency representing advection and mixing is calculated as a residual.

Upper ocean Blob DIC anomalies are primarily driven by changes in circulation processes, with biological and 
air-sea fluxes playing less important roles (Figure 4a). The black text in Figure 4a indicates the rate of change 
of DIC, as well as the fluxes of DIC into/out of the Blob region driven by air-sea, circulation, and biological 
fluxes during a typical January-February period. DIC in the top 100 m in the open GOA tends to increase in 
the winter months (𝐴𝐴

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 5.8 ± 3.1 mol C m −2 yr −1), driven almost entirely by the tendency of circulation to 

advect and mix DIC vertically and laterally into the region (4.6 ± 3.2 mol C m −2 yr −1), with air-sea flux and 
biological remineralization adding slightly to this tendency (Figure 4a). We group all physical tendency terms 

Figure 3. Vertical structure of the Blob from the Community Earth System Model Forced Ocean Sea Ice Reconstruction. Detrended vertical profiles of (a) potential 
temperature, (b) dissolved inorganic carbon (DIC), and (c) oxygen concentration in the Gulf of Alaska box during (black) January-February 2014 and (green/gray) 
January-February 1985–2010 with one standard deviation.

Figure 4. Drivers of changing biogeochemistry in the Blob. (a) Rate of change of salinity-normalized dissolved inorganic carbon (DIC) in the upper 100 m of the 
Blob region during (black) the base period January-February 1985–2010 and (red) January-February 2014 (mol m −2 yr −1). Fluxes of DIC driven by air-sea exchange, 
biological processes, and ocean circulation during the Blob and base period are indicated as arrows. Arrows into the box represent addition of carbon (positive) while 
arrows out of the box indicate loss of carbon (negative) (b) As in panel a, but for dissolved oxygen (mol m −2 yr −1).
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for biogeochemical variables into a single category called “circulation,” which refers to the sum of all advective, 
mixing, and diffusive processes that influence biogeochemical tracer transport in the model, including parameter-
ized circulation. During the winter of 2013–2014, changes in the circulation tendency reduced the supply of DIC 
into the Blob region, which decreased the DIC concentration relative to its mean state (Figure 4a). This change  in 
DIC circulation tendency is associated with an increase in density stratification in this region during the Blob, 
which is outside of typical variability at the 2σ level (Figure S8 in Supporting Information S1). The Blob also 
led to anomalies in biological carbon fluxes, but these were much smaller magnitude changes. These results are 
supportive of a stratification-driven decrease in DIC supply during the Blob in this region.

What processes are responsible for the decrease in the upper ocean oxygen concentration during the winter of 
2013–2014 in the open GOA in CESM FOSI (Figure 3c)? Detrended Blob anomalies in oxygen relative to the 
base period illustrate the vertical extent of oxygen anomalies during the Blob (Figure 3). While DIC is a conserv-
ative tracer and independent of temperature changes, oxygen is a dissolved gas whose concentration in seawater 
is highly sensitive to changes in temperature. To more closely examine the role of temperature in driving oxygen 
changes, we decompose the modeled Blob oxygen anomaly (ΔO2) into temperature and non-temperature driven 
components,

Δ𝑂𝑂2 =
𝜕𝜕𝑂𝑂2

𝜕𝜕𝜕𝜕
⋅ Δ𝜕𝜕 + Δ𝑂𝑂2,non−T, (5)

where the first term captures the temperature sensitivity component 𝐴𝐴
𝜕𝜕𝜕𝜕

2

𝜕𝜕𝜕𝜕
  = −3.32 mmol O2° C −1 and is determined 

via Equation 6 and Table 3.2.4 of Sarmiento and Gruber (2006), and the non-T term is the residual. This analysis 
reveals that the loss of oxygen in the open GOA during the winter of 2013–2014 is primarily driven by temper-
ature, with other processes playing only a small role (Figure S7 in Supporting Information S1). This finding is 
also reflected in the upper ocean oxygen budget for the Blob region (Figure 4b), where changes in air-sea oxygen 
flux due to solubility are largely responsible for the decreasing oxygen concentration, while changes in oxygen 
driven by circulation and biological processes play secondary roles. Thus, while ocean circulation changes and 
stratification (Figure S8 in Supporting Information S1) brought on by anomalous upper ocean heating during the 
Blob reduced the DIC supply and temporarily relieved surface ocean acidification, this same upper ocean heating 
decreased the solubility of oxygen and led to temporary surface deoxygenation.

4. Conclusions and Discussion
Our research shows that the Northeast Pacific Blob was characterized by dramatic changes in regional marine 
biogeochemistry. In the open GOA during the winter of 2013–2014 at peak Blob SST anomalies, we found 
significant increases in surface ocean Ωarag and decreases in surface ocean oxygen concentrations. These biogeo-
chemical anomalies extended to depths of 100 m and were ultimately driven by ocean stratification anomalies (in 
the case of Ωarag) and temperature/solubility forcing (in the case of oxygen).

These results demonstrate that marine heat waves can have strong biogeochemical signals in the open ocean. In 
the case of the Blob, the heat wave was associated with a temporary mitigation of acidification but an exacer-
bation of deoxygenation in the open GOA, aligning with Blob-associated biogeochemical anomalies in coastal 
regions (e.g., Siedlecki et al., 2016). While our study focused primarily on the Blob, the later arc-shaped pattern 
of the heatwave in the winter of 2014–2015 produced similar surface biogeochemical responses to the anomalous 
warming. The persistent near-surface oxygen deficit relative to the mean could result in vertical redistribution 
of some species within the Blob. While changes in DO values may lead to changes in species distributions 
(Meyer-Gutbrod et al., 2021), previous work has suggested that the effect of overall lower DO values may be less 
important than the rate of that change (Guo et al., 2022).

As an investigation of multiple ecosystem stressors or compound events, this study indicates that the Blob stressed 
the ecosystem with both high temperatures and reduced oxygen concentrations, but that organisms that perform 
calcification may have experienced some benefits from the event. As such, our work demonstrates that marine 
heatwaves do not necessarily lead to universally worse environmental conditions for sensitive marine ecosystems. 
These findings may also apply to marine heatwaves in other ocean basins, such as for the North Atlantic heatwave 
in Summer 2012 (Scannell et al., 2016). They also do not necessarily serve as analogs for future climate change, 
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as the temporary changes induced by marine heatwaves may enhance or mitigate long-term trends, depending on 
the variable of interest.

These results are a promising start to understanding the multiple stressors impacting the ocean during marine 
heat waves which have vast impacts on marine ecosystems. Future work should investigate other marine heat-
waves from an observational and modeling perspective to better understand the risks to the marine ecosystem. 
Newly-developed seasonal-to-decadal predictive model simulations also offer the chance to identify and predict 
extremes in advance, which may allow for adaptive marine resource management in the future.

Data Availability Statement
The CESM simulation data analyzed in this paper are available from the project web page of the CESM 
Decadal Prediction Large Ensemble (http://www.cesm.ucar.edu/projects/community-projects/DPLE/). Ocean-
SODA-ETHZ can be found at https://doi.org/10.25921/m5wx-ja34. OMIP2 model data have been generated 
as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also 
GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The project includes simulations 
from about 120 global climate models and around 45 institutions and organizations worldwide—Project website: 
https://pcmdi.llnl.gov/CMIP6. Data from the Papa Buoy can found for oxygen (https://doi.org/10.3334/cdiac/otg.
tsm_papa_145w_50n_o2_n2) and carbon (https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0100074/).
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