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Time-area closures are a valuable tool for mitigating fisheries bycatch. There is increasing
recognition that dynamic closures, which have boundaries that vary across space
and time, can be more effective than static closures at protecting mobile species in
dynamic environments. We created a management strategy evaluation to compare
static and dynamic closures in a simulated fishery based on the California drift gillnet
swordfish fishery, with closures aimed at reducing bycatch of leatherback turtles. We
tested eight operating models that varied swordfish and leatherback distributions,
and within each evaluated the performance of three static and five dynamic closure
strategies. We repeated this under 20 and 50% simulated observer coverage to alter
the data available for closure creation. We found that static closures can be effective
for reducing bycatch of species with more geographically associated distributions, but
to avoid redistributing bycatch the static areas closed should be based on potential
(not just observed) bycatch. Only dynamic closures were effective at reducing bycatch
for more dynamic leatherback distributions, and they generally reduced bycatch risk
more than they reduced target catch. Dynamic closures were less likely to redistribute
fishing into rarely fished areas, by leaving open pockets of lower risk habitat, but these
closures were often fragmented which would create practical challenges for fishers and
managers and require a mobile fleet. Given our simulation’s catch rates, 20% observer
coverage was sufficient to create useful closures and increasing coverage to 50%
added only minor improvement in closure performance. Even strict static or dynamic
closures reduced leatherback bycatch by only 30–50% per season, because the
simulated leatherback distributions were broad and open areas contained considerable
bycatch risk. Perfect knowledge of the leatherback distribution provided an additional
5–15% bycatch reduction over a dynamic closure with realistic predictive accuracy. This
moderate level of bycatch reduction highlights the limitations of redistributing fishing
effort to reduce bycatch of broadly distributed and rarely encountered species, and
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indicates that, for these species, spatial management may work best when used
with other bycatch mitigation approaches. We recommend future research explores
methods for considering model uncertainty in the spatial and temporal resolution of
dynamic closures.

Keywords: bycatch, spatial closures, dynamic ocean management, EcoCast, management strategy evaluation
(MSE)

INTRODUCTION

A key threat to sustainable fisheries is bycatch – the unintended
catch of non-target species (Lewison et al., 2014; Savoca et al.,
2020). Some of the tools for bycatch mitigation include gear
changes, bycatch quotas, and spatial management (Hall et al.,
2000; O’Keefe et al., 2014). Time-area closures are a common
type of spatial management, whereby an area of high bycatch
risk is systematically closed to remove fishing effort at particular
times (Goodyear, 1999; Dinmore et al., 2003; Armsworth et al.,
2010). Once established, these closures are often static and
not responsive to changing species distributions and fisheries
operations (Lewison et al., 2015; Smith et al., 2020). As climate
change and variability force species redistributions, static closures
may increasingly and unnecessarily restrict fishing activity in
areas where bycatch risk is low (Grantham et al., 2008; Hazen
et al., 2018).

Due to the limitations of static closures, there is increasing
emphasis on dynamic management, whereby management
strategies use near-real-time data to better align scales of
management to scales of change in biological habitats, the
physical environment, and resource use (Oestreich et al.,
2020). Dynamic ocean management is a key development in
spatial management of fisheries, with potential for improving
conservation of mobile species, while reducing economic impacts
(Lewison et al., 2015; Maxwell et al., 2015; Dunn et al., 2016).
Dynamic time-area closures are often based on thresholds
or models of suitable habitat (Hobday and Hartmann, 2006;
Howell et al., 2008), and have evolved into near-real-time (and
forecastable) multi-species bycatch avoidance tools (Howell et al.,
2015; Hazen et al., 2018).

There are numerous challenges when implementing dynamic
time-area closures. Data and technology requirements for real-
time or forecasted products are considerable, and aligning spatial
and temporal scale with the practical needs of managers and
fishers can be challenging (Maxwell et al., 2015; Welch et al.,
2019a). Additionally, the redistribution of fishing effort outside
closures can have unintended consequences on fishery bycatch
and economic efficiency (Powers and Abeare, 2009; O’Keefe et al.,
2014; Hoos et al., 2019). Further complications arise when the
closure objective is to reduce bycatch of multiple species. When
species have different habitat distributions, meeting multiple
objectives can reduce the efficacy of dynamic time-area closures
(Welch et al., 2020). Clearly there is great potential for dynamic
time-area closures, but more integrated analysis is needed to
better quantify the benefits and limitations of dynamic closures
derived from species distribution models (SDMs), including how
sensitive closure performance is to specific habitat associations or
data availability.

We compared static and dynamic time-area closures using
management strategy evaluation (MSE) – a type of simulation
used to compare multiple management strategies (Punt et al.,
2016). We simulated a fishery based on the California drift
gillnet swordfish (Xiphias gladius) fishery (DGN), and evaluated
performance of static and dynamic closures in reducing bycatch
of (1) leatherback turtles (Dermochelys coriacea) using single
species closures, and (2) leatherback turtles and blue sharks
(Prionace glauca) using multi-species closures. We used the
DGN as the reference fishery for our simulation because it
currently experiences a large static time-area closure aimed
at minimizing bycatch of leatherback turtles (the Pacific
Leatherback Conservation Area, PLCA, Figure 1), and because
there is extensive geo-referenced catch and bycatch information
from an observer program (Urbisci et al., 2016; Mason et al.,
2019). The DGN was also the case study for development of
‘EcoCast,’ a dynamic decision support tool for bycatch avoidance
(Hazen et al., 2018). EcoCast maps fishing suitability based on
the estimated distributions of target and bycatch species, and can
be extended to create highly dynamic and multi-species time-
area closures using fishing suitability thresholds. The flexibility
of the MSE framework allowed us to develop a set of models
of the biological and management systems (‘operating models’),
encompassing the key uncertainties of species distributions,
closure creation, and observer program size, and evaluate which
closures were most robust to these uncertainties.

The goal of our study was to compare the performance of
static and EcoCast-based dynamic time-area closures, aimed at
reducing bycatch of two species, using a simulation based on the
DGN. Of particular interest were: (1) quantifying the trade-off
between bycatch avoidance and economic considerations such as
target species catch and trip-level profit, (2) exploring sensitivity
of closure performance to the dynamism of a species’ distribution
and the size of an observer program, (3) quantifying the
magnitude of variation in simulated catches due to interannual
ocean variability, and to stochastic elements such as the location
of fishing and bycatch observation, and (4) identifying more
generally the conditions under which time-area closures and the
subsequent redistribution of fishing effort are likely to be effective
tools for bycatch mitigation.

MATERIALS AND METHODS

General Simulation Approach
Our simulation used a management strategy evaluation (MSE)
framework (Figure 2). MSE is a closed-loop simulation,
comprised of one or more operating models representing
the assumed ‘true’ biological and fishery conditions, and a
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FIGURE 1 | The closure areas implemented in the DGN and in our simulation (n = 12; see Supplementary Material S1 for closure dates), with the exception of the
Pacific Leatherback Conservation Area (PLCA) and Loggerhead Conservation Area (red lines) which were not implemented in our simulation.

management process representing the detection and response
of management to the operating model (Punt et al., 2016). In
our case, the operating models defined the ocean state, fishing
locations, and the distribution of potential catch and bycatch,
while the management process defined the observer program and
the creation and implementation of static and dynamic time-
area closures (Figure 2A). The MSE framework was particularly
appropriate in this study, because leatherback turtles are rarely
encountered in the DGN (Martin et al., 2015; Mason et al., 2019),
which makes their distribution and bycatch risk challenging
to quantify. By using MSE, we were able to characterize this
uncertainty by testing multiple plausible operating models of
leatherback distribution, and evaluate closure strategies assuming
each operating model was true.

Although our simulation closely represents the DGN, the
simulated static and dynamic closures are dependent on the
specific leatherback distribution scenario simulated in the
operating model (‘simulated truth’) and thus do not represent
actual closures in the DGN. Our simulation should be considered
a hypothetical fishery because the simulated static closures,
although created to represent a PLCA-like closure (Figure 1),
differed from the PLCA in shape and location. Thus, our
simulation does not attempt to identify the best closure for
reducing leatherback turtle bycatch in the actual DGN; rather,

we use the DGN as a guide for a realistic fishery in which
to compare the relative performance of static and dynamic
time-area closures, given uncertainties in the biological and
management systems.

The Drift Gillnet Fishery
The DGN is a federally managed fishery which has operated over
the period from 1980 to the present in the national waters of
the U.S. west coast. It targets highly migratory species (HMS)
with swordfish being the dominant targeted species (currently
contributing∼86% of total revenue; Pacific Fisheries Information
Network, PacFIN). The DGN commonly catches non-target
species such as blue sharks and molas (Mola mola), which are
not marketable, and more rarely interacts with marine mammals
and sea turtles (Mason et al., 2019). DGN vessels remain at
sea for multiple days before landing their catch, and deploy the
gillnet (as a ‘set’) typically overnight. The exclusive economic
zone (EEZ) off California is closed annually to the DGN from
1st February to 30th April, and is closed from the coast to 75 nm
from shore from 1st May to 14th August, meaning that a de facto
DGN fishing season operates from 15th August to 31st January
(Supplementary Material 1).

The DGN has a complex management history with numerous
regulatory changes, and participation in the fishery has declined
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FIGURE 2 | Our simulation framework, describing the MSE loop (A), the phases in which the simulation progressed (B), and the variations and closure strategies
tested (C). The operating models were eight combinations of leatherback turtle (LB), swordfish (SF), and blue shark (BS) catch models, and are defined alongside the
static and dynamic (Dyn.) closure strategies in Table 2. Output from a California Current System implementation of the Regional Ocean Modeling System (ROMS)
informed the spatially explicit catch models for swordfish, blue shark, and leatherback turtles, as well as the species distribution models (SDMs) used to create the
dynamic closures. The number of runs was 80 in Phase 1, and 720 in Phase 3.

substantially over the last 20–30 years (Holts and Sosa-Nishizaki,
1998; Urbisci et al., 2016; Mason et al., 2019). A number of
regulations have been implemented to reduce bycatch, including
gear modifications and time-area closures. There are currently
14 permanent or temporary closures, including two time-area
closures aimed at reducing bycatch of sea turtles (Figure 1
and Supplementary Material 1). The largest of these closures
is the PLCA, which was designed to encompass the majority
of observed leatherback turtle bycatch events. The PLCA was
implemented in 2001 and is enacted each year from 15th
August to 15th November. This closure timing is considered
effective at reducing interactions with leatherback turtles (Eguchi
et al., 2017). It is also considered to have contributed to a
reduction in effort and landings of swordfish on the U.S. West
Coast. Continued assessment of the economic impacts of these
(and potential) regulations and closures is important to ensure

thorough evaluation of the trade-off between bycatch reduction
and economic opportunity; especially in the context of absolute
bycatch impact (which for the DGN is comparatively low; Savoca
et al., 2020), and considering the potential for “leakage” and
“spillover” of the bycatch problem for many HMS (Chan and Pan,
2016; Helvey et al., 2017).

The National Marine Fisheries Service (NMFS) established
a federal observer program for the DGN in 1990, usually
covering 15–20% of fishing trips. This program provides a
range of information, including the dates and locations of all
sets and set-level counts of all caught species. We used this
observer data to develop catch models for swordfish, blue shark,
and leatherback turtles. We selected these two bycatch species
due to the influence of leatherbacks on the DGN’s current
spatial management, because both leatherbacks and blue sharks
are included in EcoCast, and because blue sharks represent a
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commonly encountered species to contrast the rare bycatch of
leatherbacks. The DGN also uses logbooks that report total
landings, and these data were used to determine realistic total
fishing effort in our simulation. A cost-earnings survey has also
been done for this fishery (years 2009–2010; NMFS, unpublished
data), which provided essential information on variable fishing
costs (Smith et al., 2020).

The MSE Simulation
Simulation Framework
The simulation framework consists of an MSE simulation loop
(Figure 2A), which was run in three phases (Figure 2B), and
repeated numerous times to include a range of operating models
(uncertainty scenarios) and spatial management strategies
(Figure 2C). The operating model in the MSE loop defined
the distribution and catch rate of swordfish, leatherback turtles,
and blue sharks. These were correlative catch models informed
by a suite of habitat variables, including dynamic ocean
covariates taken from a data-assimilative implementation of
ROMS configured for the California Current (Neveu et al.,
2016)1. The MSE operated at the scale of the ROMS output:
daily, and at a 0.1◦ (∼10 km) horizontal resolution. We simulated
eight operating models, corresponding to eight combinations of
our catch models, to incorporate uncertainty in the distribution
of leatherback turtles and swordfish. The catch models were
used to predict daily potential catch across the entire domain,
given each day’s environmental conditions, with set-level catches
determined by simulating a fishing process using an agent-based
model (ABM) which did not allow fishing in closed areas.

Closed areas were determined by the simulated leatherback
closure defined by the spatial management strategy being
assessed. We evaluated performance of nine spatial management

1https://oceanmodeling.ucsc.edu/

strategies, which were a no closure reference strategy, three
static closures, and five dynamic closures. Each operating
model and management strategy combination was iterated five
times to incorporate random variation in which trips were
observed, model-based closure creation, and fishing locations
and simulated catch (Figure 2C). We also repeated the entire
simulation for two levels of an observer program (20 or
50% coverage of vessels) to explore how the amount of
bycatch information influenced closure performance. Given
how our model was tuned, 20% coverage represented a
minimum amount to create our dynamic closures, and we
chose to explore whether increasing information above this
minimum improved closure performance (and not because
we are specifically interested in 50% coverage). Of interest,
but beyond the scope of our study, would be to explore the
relationship between observer coverage, bycatch rate, and SDM
performance. This would be important when evaluating the
suitability of dynamic closures in real-world fisheries with less
observer coverage. Catch and fishing information (e.g., distance
traveled, profit) were recorded and stored for evaluation of
closure performance.

In Phase 1 of the simulation, the MSE loop was run for
5 years without a leatherback closure. This created 5 years of
an observer program with which to create leatherback closures.
In Phase 2 (which occurred instantaneously), the data from this
observer program (given either 20 or 50% coverage of trips;
Figure 2C) were used in the creation of static and dynamic
time-area closures to be implemented in Phase 3. In Phase
3, the MSE loop was run for another 5 years, this time with
a leatherback closure implemented. The performance metrics
recorded in Phase 3 were those used to compare performance of
the various closure strategies, often with respect to the baseline
‘no closure’ strategy (Table 1). The simulation was developed in
R (v3.6.3; R Core Team, 2020).

TABLE 1 | Summary of the key performance metrics used to evaluate closure strategies.

Performance metric Units Represents

Swordfish catch Total number per season; mean number per set per season Total number: fishing effort and fishing quality Mean
number: fishing quality

Blue shark and leatherback turtle
bycatch

Total number per season; mean number per set per season Total number: fishing effort and bycatch risk Mean number:
bycatch risk

Number of leatherback turtles per 100
swordfish

Ratio per season Bycatch risk relative to swordfish returns; the ‘reduction
ratio’ (Dunn et al., 2016)

Mean partial profit per trip $US, mean of all vessels per season Economic impact; swordfish landings revenue minus
variable costs

Mean distance traveled per trip km, mean of all vessels per season Access and economic impact (distance costs)

Area open Percentage of entire West Coast EEZ Access and opportunity

Missed sets Percentage of sets per season Opportunity; sets could not occur due to no reasonable
access to open area

Vessels ‘traveled too far,’ reducing the
duration (from 12 h) available for fishing

Percentage of sets per season Opportunity; undesired fishing conditions, due to no nearby
open area

Shared fishing location Percentage of sets per season Opportunity; undesired fishing conditions, due to potential
crowding

Clump threshold not reached Percentage of sets per season Opportunity; undesired fishing conditions, due to open area
being scattered/minimal

Most metrics are reported at the level of fishing season, and relative to the ‘no closure’ strategy. See Supplementary Table 4.5 for more detail on the opportunity metrics.
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Catch Models
The distribution of potential catch for the three species was
determined using correlative SDMs (Figure 3). These were
fitted to the actual observer data for the DGN, from 1990
to 2000 (∼5700 observed sets). This period was selected as it
was before the implementation of the PLCA closure, and thus
before the distribution of fishing effort changed considerably.
We created four leatherback turtle catch models and two
swordfish models to define the distribution of potential catch
and bycatch (Table 2). Varying the leatherback model allowed
us to explore closure performance across plausible differences
in leatherback distribution (LB1 and LB2), as well as explore
the impact of species distribution type (seasonal or broad) on
closure performance (LB1seas, LB2scal). It was important to
test plausible differences in swordfish distribution (SF1, SF2),
because the distribution of expected and recent swordfish catch
influenced fishing locations (see the ABM below). Only a single
blue shark catch model was used, in order to keep the number of
operating models manageable.

A variety of correlative models were used to develop the catch
models (Table 2 and Supplementary Material 2). Classification
trees (random forests; Breiman, 2001) were used to model
leatherback bycatch due to the very low number of observed
bycatch events (n = 23), and random forests are known to be
robust for modeling rare bycatch (Carretta, 2018; Stock et al.,
2019). Given that a maximum of one leatherback turtle is typically

caught per DGN set, we chose to model leatherback catch
rate as a Bernoulli process (catch of zero leatherbacks or one
leatherback). Predicted probabilities for classification trees were
then defined as the proportion of votes of each class from the
individual trees. We used down-sampling to correct imbalance
in the absence and presence classes of observation (Stock et al.,
2019). Like other authors (Stock et al., 2018), we found that
class imbalance-corrected random forests overpredicted bycatch
rates, and we rescaled the predicted bycatch probabilities using a
general updating approach (Elkan, 2001; Suppementary Material
2). However, our simulation was designed so that leatherback
closures could be created using a simulated observer program,
and the actual observed bycatch rate (∼0.004 per set) was too
low to create useful closures over a short period (especially the
SDM-based dynamic closures). In practice, EcoCast incorporates
animal tracking data to create risk surfaces for rare species (Hazen
et al., 2018), but tracking data were too complex to simulate in
our MSE (which would require not only a simulated observer
program but also simulated animal locations and a tracking
program). Thus, we rescaled the leatherback bycatch probabilities
to have an inflated bycatch rate of ∼0.07 leatherbacks per set
for each catch model. Testing showed this catch rate was near
the minimum required to create the dynamic closures without
fitting issues (given 20% observer coverage). Thus, the absolute
bycatch rate in our study does not represent that in the actual
DGN, but closure comparisons using percent bycatch reduction

FIGURE 3 | Predicted catch by the seven catch models used to define the operating models (Table 2). Shown is the mean predicted catch for November (i.e., the
mean of all November days for 1991–2000; the mean November catch rate averaged across the domain is in parentheses); November was chosen as this has high
fishing effort. The color is the predicted mean probability of catching one leatherback per 12 h set (A–D), or the mean number of swordfish (E–F) or blue sharks (G)
per 12 h set. See Supplementary Material S2 for example maps of daily predicted catch. The latitudinal limits of prediction were due to the limits of the FTLE
variable, except the northward limit in SF2 which was the limit of the soap film smoother.
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TABLE 2 | Summary of the seven catch models used to define the operating
models, and the nine static or dynamic closure strategies.

Catch Model Description

LB1 Leatherback turtle probability of catch model; binomial
random forest; down-sampled and re-scaled to give an
∼0.07 set−1 catch rate; environmental covariates plus
geographic coordinates; leatherbacks very rare south of
∼33◦S

LB2 Same approach as LB1, but without geographic
coordinates in the random forest; this created a broader
species distribution

LB1seas Same as LB1, but with forced seasonality (leatherbacks
gone from domain by end of Nov.)

LB2scal Same as LB2, but rescaled using scalar; this gave the same
catch rate, but broadened niche

SF1 Swordfish catch model; Poisson BRT; environmental
covariates plus latitude

SF2 Swordfish catch model; negative binomial GAMM;
environmental covariates, plus a space-time smoother and
vessel ID random effect

BS1 Blue shark catch model; Poisson BRT; environmental
covariates

Closure Strategy Description

No closure (NC) No leatherback turtle closure, but all other 12 closures
implemented as in the real DGN fishery (Figure 1). This was
a baseline strategy for comparing closure performance

Static-obss Static time-area closure, defined as the area inside a kernel
density estimate contour, surrounding ∼90% of simulated
observed leatherback bycatch from Phase 1, with start and
end dates encompassing ∼90% of observed bycatch
(strict)

Static-obsm Same as Static-obss, but for 70% of observed bycatch
(moderate)

Static-pred Static closure, defined by a predicted mean probability of
presence, estimated by a binomial GAM with bivariate
smoother of latitude and longitude fitted to simulated
observer data from Phase 1; locations with >0.1 probability
of presence considered closed

Dyn-multis Dynamic closure, based on the EcoCast fishing suitability;
with more even ‘multi-species’ weights (LB = –0.5,
BS = –0.25, SF = + 0.25), and strict risk threshold
encompassing 90% of predicted good quality leatherback
habitat; locations with risk greater than this threshold
considered closed

Dyn-multim Same as Dyn-multis, but with a moderate risk threshold
encompassing 50% of predicted good quality habitat

Dyn-turts Dynamic closure, based on the EcoCast fishing suitability,
with leatherback turtle favored species weights (LB = –0.8,
BS = –0.1, SF = + 0.1), and strict risk threshold
encompassing 90% of predicted good quality leatherback
habitat

Dyn-turtm Same as Dyn-turts, but with a moderate risk threshold
encompassing 50% of predicted good quality leatherback
habitat

Dyn-turtsP Same as Dyn-turts, but with ‘Perfect knowledge’ of the
leatherback turtle distribution; the leatherback operating
model was used to calculate the EcoCast metric, instead of
the SDM calculated in Phase 2

Catch models were fitted to the observer data from the 1990–2000 period. Static
closures had the same spatial and temporal dimensions for the duration of Phase 3,
and dynamic (EcoCast) closures changed daily based on the predicted distributions
of the three species. Additional information on the catch models and closures is
provided in Supplementary Materials 2, 3.

are indicative of performance given rare bycatch species with a
leatherback-like distribution.

There were two main random forests fitted for leatherback
turtle catches (LB1 and LB2; Table 2). While both generated
plausible bycatch distributions relative to observed bycatch
events (Supplementary Table 2.2), they were reflective of
different potential leatherback distribution patterns. Both models
included environmental covariates and an effort covariate (set
duration), but only one also included geographic coordinates
(LB1). LB1 represents a leatherback distribution with core habitat
off central California (Figure 3), which agrees with existing
research indicating this may be part of, and a transit region
for, an important foraging area (Eguchi et al., 2017). LB2
represents a broader and more variable leatherback distribution
which is determined predominantly by dynamic habitat variables
(Supplementary Material 2). The LB1seas model is identical to
the LB1 model, but with a forced migration signal that removes
leatherbacks from the domain by the end of November. This
was done to match telemetry patterns (Benson et al., 2011),
and to represent a leatherback distribution potentially more
amenable to spatial management (i.e., bycatch risk exists in
a smaller and more predictable part of the fishing season).
The LBscal model was rescaled using a fixed scalar, which
created a leatherback distribution with the same mean catch
rate but less difference between ‘high bycatch risk’ and ‘low
bycatch risk’ habitat (Suppementary Material 2). This represents
a distribution potentially less suitable for spatial management
(i.e., redistributing vessels from high risk to low risk areas will
have less impact on bycatch reduction). More information on
model covariates, rescaling, performance, and fitted parameters
are provided in Supplementary Material 2.

The two swordfish catch models (SF1 and SF2, Table 2)
were fitted to the observer data as a boosted regression tree
(BRT; SF1) or generalized additive mixed model (GAMM;
SF2). GAMMs and BRTs are common tools for species
distribution modeling; both have shown success in modeling the
distribution of potential swordfish catch (Smith et al., 2020) and
both were plausible models based on their similar predictive
performance (Supplementary Table 2.3). The GAMM included
environmental covariates, a space-time tensor using a soap-
film smoother for geographic coordinates, and a vessel ID
random effect (using bs = “re”). The BRT included environmental
covariates and latitude. Both models included the effort covariate
(set duration). Swordfish catch (number per set) was modeled
with a negative binomial family in the GAMMs and a Poisson
family in the BRT (36% of sets caught zero swordfish). Evaluation
of residuals and overdispersion in the GAMM showed the
negative binomial was appropriate. This family was not available
for the BRT, but an evaluation of the model prediction from the
BRT showed a sensible distribution of catch rates (evaluated in
Smith et al., 2020). The blue shark model (BS1, Table 2) was
fitted as per SF1, using a Poisson BRT. More information on these
models is provided in Supplementary Material 2.

These seven catch models were used to predict potential
catch across the modeled domain (Figure 3) for each day of
the simulation, and saved as rasters for use in the MSE loop.
The prediction specified set duration at 12 h, which was the
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mode and median from the observer data. Predicted potential
catch was thus the mean number of swordfish or blue shark per
12 h set, or the mean probability of catching one leatherback
turtle per 12 h set. By modeling catch statistically and without
population dynamics, our study evaluated closure performance
under assumptions of fixed population abundance and no
depletion at any spatial scale.

Spatial Management Strategies
Our MSE compared nine time-area closure strategies (Table 2).
Each static closure kept the same spatial and temporal
dimensions for the entire Phase 3 (Figure 2B) but these
dimensions changed between operating models and iterations.
Dynamic closures changed daily, and also changed between
operating models and iterations, and were implemented for the
entire fishing season. The reference closure strategy was ‘no
leatherback closure,’ in which there was no closure and vessels
were free to fish anywhere outside other closures (Figure 1).

We simulated three static closure strategies (Table 2). These
were based loosely on the PLCA, which was designed to enclose
the majority of observed leatherback turtle bycatch (Figure 1).
We used two methods to approximate this design process in
our simulation: kernel density estimation and regression. Closure
creation occurred in the management process (Figure 2A) in
Phase 2 of the MSE (Figure 2B) using the simulated observer
data collected in Phase 1. The first approach created a kernel
density estimate (KDE) of the simulated observed leatherback
bycatch, and defined the closure as a threshold of that KDE.
We term this the ‘Static-obs’ closure, to indicate a static closure
that encompasses only observed bycatch events. We specified
two thresholds: 70 and 90%, meaning that the KDE area (i.e.,
the closure) enclosed 70 or 90% of observed bycatch events.
These thresholds correspond to the ‘Static-obsm’ (moderate) and
‘Static-obss’ (strict) strategies (Table 2). The second approach
used regression to create the closure, specifically a binomial GAM
relating bycatch occurrence to a bivariate smoother of latitude
and longitude; i.e., the probability of bycatch as a static function
of location. A threshold probability was specified (0.1 probability
of presence), and locations with bycatch probabilities higher than
this threshold were considered closed. The key difference between
the KDE and GAM approaches is that the KDE does not account
for catch rate and is more influenced by the distribution of
fishing effort, whereas the GAM models catch rate and may close
areas that have a high bycatch rate relative to effort, even if the
number of observed bycatch events is small. We thus term this
closure ‘Static-pred’ to indicate the closure encompasses areas of
predicted bycatch events. The PLCA is enacted for only part of
the fishing season, with fixed start and end dates (Supplementary
Material 1), so we also simulated start and end dates for the
simulated static closures. As for the spatial extent, start and
end dates were selected to encompass 70 or 90% of observed
events (for the Static-obs closures) and 80% for Static-pred. For
simplicity, start and end dates were evaluated at the monthly
level, with closures starting or ending on the 15th of a month.
Threshold values were arbitrary, but were selected so that the
amount of fishable area closed was comparable to the PLCA and

relatively similar among strategies. Examples of the static closures
are shown in Figure 4.

We simulated five dynamic closures (‘Dyn’; Table 2), all
created using the EcoCast decision support tool (Hazen et al.,
2018). EcoCast sums predictions from presence-absence SDMs of
multiple species to generate a fishing suitability (or risk) surface,
with weightings used to determine each species’ contribution to
the calculated risk. EcoCast can include both bycatch and target
species and weight each more negatively (for bycatch species) or
positively (for target species) depending on the prioritization of
species. Our closures were defined as those areas with predicted
bycatch risk greater than a specified threshold. We specified a
three-species EcoCast (swordfish, leatherback turtle, blue shark)
to explore one key aspect of EcoCast – the ability to balance
objectives for target and bycatch species – and to more closely
resemble the multi-species version currently available to DGN
fishers (Hazen et al., 2018; Welch et al., 2020). EcoCast risk
surfaces were created in Phase 2, by: (i) creating environmentally
informed SDMs for each species using the simulated observer
data matched to environmental data from ROMS; (ii) predicting
the risk surface for every day in Phase 3; and (iii) closing to
fishing for every day in Phase 3 the areas with EcoCast values
above the risk threshold. The SDMs were created using BRTs
in an approach very similar to that used for EcoCast. The four
EcoCast closure strategies were strict and moderate thresholds for
two species-weighting scenarios (Table 2). The species weightings
represent a ‘multi-species’ closure in which the habitats of all
three species were evenly weighted (‘Dyn-multi’; i.e., habitats
with high leatherback bycatch risk will have their risk reduced
if they are also good swordfish habitat and/or poor blue shark
habitat), and a ‘single-species’ closure in which leatherbacks were
prioritized over the other species (‘Dyn-turt’; i.e., habitats with
high leatherback bycatch risk will remain high risk regardless
of suitability for the other species). The EcoCast thresholds
were calculated using an iterative process to encompass 90%
(strict) or 50% (moderate) of the ‘good quality’ leatherback
turtle habitat (defined as > 0.1 probability of occurrence). Thus,
‘Dyn-turts’ represents the closure with the highest leatherback
avoidance objective. These threshold values were selected so that
the amount of fishable area closed was comparable between static
and dynamic closures.

An important element of MSE is ensuring that the information
from the operating model available to the management process
has realistic error (Punt et al., 2016). In our case, it was key to
ensure that the SDMs used to calculate EcoCast and create the
dynamic closures were realistically accurate, given that SDMs
were also used to define the operating models. We did this
by simulating an observer program, and by using structurally
different models for the operating model and EcoCast closure
SDMs. We evaluated accuracy, and found that EcoCast had a
similar predictive power in the simulation (AUC = 0.66–0.81)
as it does in the real world for leatherback turtles (AUC = 0.77;
Welch et al., 2020), so no additional error was simulated. The
final ‘Dyn-turtsP’ strategy was created, in part, to explore this
simulated and real-world accuracy (Table 2), and performance
of this closure represents maximum EcoCast performance
given perfect knowledge (no observation or estimation error)
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FIGURE 4 | Maps of closure strategies for an example date (2nd November 1997), with color indicating the potential swordfish catch (number per 12 h set) defined
by model SF2. White areas indicate closures (or area outside the EEZ). Also shown are six ports used as departure ports in our simulation (gray circles), plus four
ports available for landing only (gray triangles). Panel (A) shows the non-turtle closures active on this date (Washington, Oregon 1000 fathom, California 12 nm, Point
Reyes), and the simulated observed leatherback turtle bycatch events (black dots) for an iteration of Phase 3 of the LB1-SF2 operating model for the no closure
strategy. Panels (B,C) show the additional closed area on this date due to the Static-obss (B) and Static-pred (C) closures (dashed black lines are closure borders).
In this iteration, these closures were implemented from 15-July to 15-December (Static-obss) and 15-August to 15-December (Static-pred). Panels (D,E) show the
additional closed area due to the strict dynamic closures, with EcoCast evenly weighted (D) or turtle weighted (E). Panel (F) shows the closed area if the Dyn-turts
closure had perfect information on the distribution of potential leatherback bycatch. Also illustrated in panels (B–F) are example fishing trips simulated by our ABM.
These vessels departed Morro Bay (black circle), made five sets (red squares) then landed their catch at the nearest port (blue circle).

of the distribution of leatherback turtles. More information
about EcoCast fitting, thresholds, and validation is presented in
Supplementary Material 3. Examples of the static closures are
shown in Figure 4.

Fishing Effort and Agent-Based Model
Our MSE used an agent-based model (ABM) to simulate fishing
(Figure 2). It was essential to have a dynamic tool like an
ABM so that the fishing locations responded realistically to
fishing closures (especially the daily updated dynamic closures).

The ABM simulated individual vessels and their fishing effort,
movement, and catches, and was based on a profit maximization
framework, whereby agents (i.e., fishing vessels) make decisions
that maximize their utility (van Putten et al., 2012). Here, utility
was measured as a vessel’s expected partial profit, which is the
revenue from expected swordfish catch minus fuel and crew costs.
Because DGN vessels fish for multiple days, with presumably
an expectation of trip duration, we calculated trip-dependent
utility. This estimates the utility of a location if it was fished
on a trip of specified duration and expected distance traveled
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(Smith et al., 2020). Our ABM operated in two stages: (1) utility
was calculated for all cells in the fishable domain; and (2)
the cell with the highest expected utility was selected from all
accessible and available cells (i.e., those that can be traveled to
within a specified time and are not in an active closure) using
an accuracy term representing an agent’s imperfect detection of
utility. The ABM is further detailed in Supplementary Material
4. See Figure 4 for example vessel tracks.

Fishing effort was determined by the number of sets each day
and their duration. Set duration was fixed (12 h) for tractability
as well as computational efficiency (set duration was a covariate
in the catch models, and the predicted daily catch rasters were
created outside the MSE loop). The number of vessels and sets
to simulate in the ABM was estimated from DGN logbooks
(sourced from PacFIN). We calculated logbook mean monthly
effort and allocated this to 5-day fishing trips, which were
then distributed to key departure ports based on the recorded
departure ports in the observer data (1990–2000). This resulted
in a monthly number of sets that matched the logbook effort,
while closely matching the observed proportional use of specific
departure ports. The departure dates of fishing trips within each
month were allocated randomly, so that for each iteration of the
simulation the daily fishing effort could vary (even if the mean
monthly effort could not). We fixed the duration of every fishing
trip at five overnight sets (the median value from the observer
data) for tractability.

Our ABM operated at the set level, so catches needed to be
integers (i.e., number per set). Thus, we calculated catch of each
species as a random sample from the distribution of each catch
model (negative binomial or Poisson for swordfish, Poisson for
blue sharks, binomial for leatherbacks) given the mean catch rate
predicted by each catch model (and fitted dispersion parameter
for the negative binomial). An advantage of this approach was
the realistic variation in catches among sets and vessels, and we
found close agreement between simulated and observed catch
frequencies (Supplementary Figure 5.2). There were numerous
parameters used in the ABM that influenced fisher behavior,
such as swordfish price and initial step distances (Supplementary
Material 4), but these were not varied in our simulation in order
to keep the number of iterations manageable. Thus, our results
represent closure performance given ‘mean’ vessel behavior, and
changes to aspects such as vessel mobility could have considerable
influence on closure performance, e.g., near-shore time-area
closures may have a greater economic impact on lower mobility
vessels (Smith et al., 2020).

Performance Metrics
The metrics we used to evaluate closure performance are
summarized in Table 1. They were focused on the total coast-
wide catch and bycatch of the three species per fishing season,
as well as the mean catch and bycatch rate (per set). We also
measured closure performance using profit, distance traveled,
and fishing opportunity. Fisher profit and distance traveled
were measured at the trip level. Fishing opportunity was
measured at the set level, and was represented by the number
of missed sets, the frequency of shared fishing cells, and the
frequency of undesirable travel behavior (see Supplementary

Table 4.5). Unlike more tactical MSEs, ours did not have
specific management objectives or targets, except that a successful
closure would reduce leatherback turtle bycatch (compared to no
closure), and beyond that provide balance in other economic and
bycatch metrics (e.g., target swordfish catch, profit, area open,
blue shark bycatch).

Simulation Validation and Uncertainty
We compared various simulation outputs with observations to
ensure our simulation was representative of DGN dynamics
and thus a useful comparison of static and dynamic closures.
Reasonable accuracy was important for the ABM in which
numerous parameters were tuned to create realistic agents. We
compared total simulated swordfish landings and their variation
throughout the fishing season against observations. To help
tune the ABM, we compared observed and modeled data for:
swordfish per-set catch rates; the distance offshore of fishing
locations; the travel distance between sets; and the general spatial
distribution of fishing effort (Supplementary Material 5). In
general, we found close agreement between simulated and real-
world fishing, although we could not reproduce the same level
of near-shore fishing (Supplementary Figure 5.3). The broader
distribution of fishing was accurate (Supplementary Figure 5.5).

A key element of MSE is incorporating all relevant
uncertainties (Punt et al., 2016). Our simulation focused on
incorporating uncertainty in: the distribution and catch rates of
swordfish and leatherback turtles; choice of fishing location; SDM
construction; the fine-scale timing of fishing effort; and which
trips were observed. These and additional sources of uncertainty
are detailed in Table 3. We were able to allocate general sources
of variation (environmental, closure creation, other; Table 3) in
our simulation, by comparing differences in key outputs among
bootstrapped pair-wise comparisons of simulation runs. This
method is detailed in Supplementary Material 5.

RESULTS

Closure Performance
In terms of swordfish catch, the strict Static-obss closure clearly
performed worst, leading to 25–40% fewer swordfish per season
compared to no turtle closure (Figure 5A). Trip profit showed
the same pattern as swordfish (Supplementary Figures 6.2–
6.5), showing that lost revenue was the predominant economic
driver, as opposed to additional distance costs. For both LB1
and LB2, this decline in swordfish catch was due to reduced
access to good quality swordfish habitat (see ‘swordfish per
set’ results, Supplementary Figure 6.2), and for LB2 was also
due to the Static-obss closure reducing fishing effort. Static-obss
under the LB2 leatherback distribution reduced effort by 10–30%
(Figure 5E). These boxplots indicate the considerable variation
among fishing seasons and iterations for all performance
metrics (Figure 5).

The moderate closures (Static-obsm, Dyn-multim, Dyn-turtm)
produced the smallest reduction in leatherback turtle bycatch,
showing that closures can be largely ineffective if only some
habitat is protected and fishing effort is mostly redistributed
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TABLE 3 | Summary of the sources of uncertainty and variation in our simulation.

Source Contribution Representation in simulation Varies among
iterations?

Distribution of species Actual distributions of species are uncertain Multiple operating models based on different plausible
distributions, with each model creating an independent
‘reality’ to compare

No

Observer program size The amount of observed catch data may influence closure
dimensions, with less information potentially leading to
more variable and less accurate closures

Full simulation run for two coverage levels of an observer
program: 20 and 50%

No

Environmental
variation1

Ocean conditions alter the distribution and catch rate of
species; thus some fishing seasons may be better suited to
a particular closure

Closures evaluated over multiple fishing seasons with
varying environmental conditions; most metrics measured
at the fishing season level

No

Allocation of trips to
observer program2

The specific trips being observed may influence the spatial
coverage and representativeness of the data available for
creating closures

Allocation of observed trips determined randomly;
incorporated into results by simulating multiple iterations

Yes

Dynamic closure model
fitting2

The BRTs used for dynamic closure creation can show
random variation during fitting (i.e., when fitted to the same
data)

Incorporated into results by simulating multiple iterations Yes

Calculating integer
catches3

Integer catches required for ABM; recognizes that fishers
can get different catches when fishing the exact same
conditions

Integer catches randomly sampled from a statistical
distribution using the predicted mean catch rate (but total
catches summed from many sets approximate mean
differences); contributes to variation among seasons and
iterations

Yes

Fishing location choice3 Variation in location choice affects catches; this alters the
data used in the observer program, and affects closure
performance as fishers can get poor catches with a good
closure, and vice versa

Locations based on profit-maximization plus stochastic
location choice within expected good fishing areas;
contributes to variation among seasons and iterations

Yes

Allocation of monthly
effort3

Fishing effort can vary temporally; may increase variation in
catches as trips occur in better/worse fishing conditions

Monthly effort allocated randomly to departure dates in a
month; contributes to variation among seasons and
iterations

Yes

All of these contributed in specific ways to variation in closure performance, but not all contributed to variation among model iterations. Sources are also identified by their
contribution to the variation allocation analysis: 1environmental, 2closure creation, 3other (note that this analysis was done for a specific operating model and observer size).

(Figure 5B). Static-obss and Static-pred achieved bycatch
reduction under the more static LB1 leatherback distribution,
but were largely ineffective when the leatherback distribution
was broader and more dynamic (LB2). Leatherback bycatch per
set indicates whether fishing effort was redistributed into less
risky habitat. According to this metric, both static and dynamic
closures were effective under the LB1 model, but only the strict
dynamic closures were effective under LB2 (Figure 5C). Thus,
the decline in total bycatch by Static-obss under LB2 was due
to reduction in fishing effort, not the effective redistribution of
fishing effort to less risky areas. In terms of balancing bycatch and
target catch, the ‘turtle per swordfish’ metric showed that strict
dynamic closures were most effective, and Static-obss the worst
(Figure 5D). The absolute means under the no closure strategy
were 2.3 leatherbacks per 100 swordfish for LB1 and 3.5 for LB2.

Both Static-obss and Dyn-multis reduced blue shark bycatch
by 20–25% under the LB2 model (Supplementary Figure 6.3),
in which closures were often larger and extended into Southern
California. However, this reduction was less than the reduction
in swordfish catch. Other closures had negligible impact on
blue shark bycatch, most likely due to this species’ very broad
simulated distribution (Figure 3).

In terms of fishing opportunity, all closure strategies closed
40–80% of the fishable area (i.e., waters within 200 km
from shore), with 15–45% more area closed than with no
turtle closure (Figure 5F). The Dyn-multis closure closed the

most area (Supplementary Figure 6.6 and Supplementary
Table 6.1) because the EcoCast threshold needed to be
stricter in order to protect 90% of good quality leatherback
habitat given the additional constraint of considering the
other species’ distributions. Even so, most fishing could still
occur in open fragments of habitat, and the distribution of
fishing effort under dynamic closures was similar to that
with no closure (Figure 6). For dynamic closures, the area
open was similar among fishing seasons except for 1997,
which was an anomalous year with low predicted bycatch
risk (Supplementary Figure 6.6). The area open within a
season for dynamic closures was more variable for the LB2
model. Although the Static-obss closure had the most impact
on fishing effort (Figure 5E), the dynamic closures more
often induced undesirable fishing conditions, such as location
sharing or traveling too far, but these occurred in <5% of sets
(Supplementary Figure 6.1).

We summarize closure performance across the two main
leatherback models in Figure 7. In this study, we consider a
successful closure one that reduces leatherback turtle bycatch
without unreasonably impacting fishing effort and opportunity.
Thus, the Static-pred closure was the most successful static
closure, but it was only effective under LB1. Dyn-turts or
Dyn-multis could be considered the most successful dynamic
closures, and were the only closures to effectively reduce
leatherback bycatch under LB2 (Figure 7). As expected, having
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FIGURE 5 | Boxplots summarizing differences between closure strategies for six key performance metrics. This compares results from the LB1 and LB2 models,
using the SF1 model and 20% observer coverage (see Supplementary Material S6 for the other operating models). All reported values are per season and
represent differences from the ‘no turtle closure’ strategy; e.g., compared to no turtle closure, having the Static-obss closure meant 25–40% fewer swordfish caught
per season. Each boxplot contains five iterations of five seasons (n = 25). Units in panels (A,B,E) are percentage changes, (C,D) are absolute catch rates, and (F) is
the absolute area (as a % of total area within 200 km from shore).

perfect information for the distribution of leatherbacks (Dyn-
turtsP) improved closure effectiveness, providing an additional
6–15% bycatch reduction over Dyn-turts (Figure 5 and
Supplementary Material 6).

Additional Models, and Observer Size
Our simulation also compared closure performance across
the two additional leatherback models (LB1seas, LB2scal), the
two swordfish models, and the two observer program sizes
(Supplementary Figures 6.8, 6.9). Performance was very similar
between LB1 and LB1seas. We created LB1seas to represent a
distribution of leatherbacks better suited to time-area closures,
but because our simulation used the same closure thresholds for
all simulation runs, closures in LB1seas simply ended earlier (and
closed less area over the entire season Supplementary Figure 6.8
and Supplementary Table 6.1) while achieving the same bycatch
reduction. To demonstrate how time-area closures may achieve
better bycatch reduction for LB1seas, a stricter closure threshold
would be required during the period the leatherbacks were
present. We created LB2scal to represent a distribution of
leatherbacks poorly suited for spatial management. This was
clearly observed, with bycatch reduction for LB2scal only

50% of that for LB2 (compare leatherback catch per set in
Supplementary Figures 6.3, 6.5, 6.8).

Closure performance occasionally differed between the
two swordfish models. The swordfish models influenced the
distribution of fishing effort, which differed more among fishing
seasons for the SF2 model (due to the space-time smoother).
The result was more variation in performance metrics for SF2
(Supplementary Figures 6.2, 6.3) and altered performance of
some closures, e.g., Dyn-multis closed more area and reduced
swordfish catch more under SF2 (Supplementary Figure 6.8).
This highlights the considerable influence the distribution of
fishing can have on closure effectiveness (i.e., how much fishing
is redistributed and to where), and some of the complexities of
multi-species closures (e.g., the degree of overlap among species
will be highly influential).

Increasing the coverage of the observer program from 20 to
50% had little impact on closure performance (Supplementary
Figure 6.9). This was especially true for LB1, indicating that
a more static species distribution requires fewer observations
to model accurately. Under LB2 and LB2scal, more observer
coverage led to slightly better performance for strict static
and dynamic closures, but this improvement was small, at 3–
9% additional bycatch reduction over no turtle closure. We
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FIGURE 6 | The distribution of simulated fishing effort under no closure (A,E), and the change in this effort under strict static closures (B,C,F,G) and the strict
turtle-weighted dynamic closure (D,H), for the LB1 and LB2 leatherback models. These represent one iteration and using the SF1 model. In (A,E) color indicates
effort, which is the total number of sets per 0.3◦-degree cells during Phase 3 (i.e., five fishing seasons and ∼15,000 sets); in other panels color indicates the change
in the number of sets (blue indicates a decrease, and orange an increase, in fishing effort compared to no closure). The red dashed line contains 95% of real-world
observed effort and the dashed black line is the boundary of the static closure for that iteration (arrows indicate direction of closed area for the Static-pred closure).
For the Static-obss closure under LB2 (F) considerable effort was relocated into a single coastal cell (∼900 km2) at the very bottom of the domain. The distribution of
actual effort (not the change in effort) is illustrated in Supplementary Figure 6.7.

note that this improvement would be case-specific, and depend
on the abundance of the species and the model being fitted,
but for our study (and somewhat by design) 20% coverage
provided acceptably accurate models of species’ distributions
(20% coverage corresponded to 160–240 observed leatherback
bycatch events in the 5 years of Phase 1).

Sources of Variation
Across all 5 years of Phase 3, interannual differences in catch
and bycatch explained 50–75% of maximum pairwise differences
(Supplementary Figure 6.10), indicating that environmental
variation (and hence species distributions) were the key drivers
of variation in catch and bycatch. Much of this environmental
variability was driven by the year 1997, when the DGN season
occurred in the midst of an El Niño event that was one of
the strongest on record and dramatically altered the physical,
chemical, and biological landscape of the California Current

System (Chavez et al., 2002, and references therein). When
the anomalous 1997 year was removed, the environmental
contribution declined to 10-50% and the majority of variation
came from the ‘other’ source (stochastic processes). The highest
contribution from stochastic processes was for leatherback
bycatch for LB1 without 1997, which represents a leatherback
distribution that has some fixed spatial structure and a
comparatively stable environment. In this case, variation in
leatherback bycatch would be comparatively small and derive
predominantly from stochasticity in whether or not a catch
occurs, and where fishers choose to fish. Stochasticity associated
with closure creation (e.g., which catch and bycatch events
were observed and how this affected closure creation) was most
important for the more dynamic LB2 leatherback distribution,
and closure dimensions tended to differ more among iterations.
Sources of variation in swordfish catch differed among swordfish
models, with SF2 having predominantly environmental sources

Frontiers in Marine Science | www.frontiersin.org 13 March 2021 | Volume 8 | Article 630607

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-630607 March 16, 2021 Time: 14:17 # 14

Smith et al. Closure Management Strategy Evaluation

FIGURE 7 | A summary of comparative median closure performance across performance metrics, for the two main leatherback models (LB1 and LB2). Color
indicates whether a strategy had best (green) or worst (red) performance across the eight strategies, with additional colors indicating intermediate performance.
Intermediate performance was calculated by dividing the range (max – min) of median values for each metric into five intervals and determining in which interval the
median for each strategy was located. Thus, colors accurately represent relative performance within metrics but are arbitrary with respect to absolute performance,
i.e., ‘best’ does not necessarily mean good performance (refer to Figure 5 and corresponding figures in Supplementary Material S6 for absolute values). This
table summarizes across swordfish models, observer levels, and simulation iterations. The primary objective of simulated closures was reduction of leatherback turtle
bycatch, and the relevant metrics are highlighted gray.

(Supplementary Figure 6.11). This was probably because the
SF2 model contained a continuous time smoother, which created
additional interannual differences in catch. Thus, if a species has
large fluctuations in abundance that are independent of ocean
conditions, then the environment (including population aspects)
may always be the key driver of variation in catch and bycatch,
rather than aspects of closures or fisher choice.

DISCUSSION

Our simulation demonstrated potential advantages of using
dynamic spatial management to reduce bycatch. The clearest
advantages of dynamic closures were: (1) achieving better
bycatch reduction relative to target species catch (leatherbacks
per swordfish); (2) being the only closures to reduce bycatch
risk (leatherbacks per set) for a leatherback turtle distribution
driven by dynamic ocean variables (LB2); (3) rarely causing a
loss of fishing effort (missed sets); and (4) achieving a spatial

distribution of fishing effort similar to that from no turtle
closure (Figure 6). Realizing these advantages did require a fleet
that was flexible in terms of fishing locations, and even with
this flexibility dynamic closures occasionally caused unappealing
fishing conditions due to a sparse or highly fragmented fishable
area. Almost all closures led to some decline in swordfish catch
(often 5–10%), and fragmentation of the fishable area was the
key disadvantage of highly dynamic closures, which would pose
practical challenges for trip planning and closure enforcement.
Perhaps the clearest signal in our study was that it was not
possible (even with perfect information) to eliminate the bycatch
of a broadly distributed species using spatial management that
involves the redistribution of fishing effort. This was because
there were few locations where risk of bycatch was zero. This
result highlights that spatial management is only one tool for
bycatch reduction, and for rarely encountered and/or widely
distributed species may be most useful when used together with
other bycatch mitigation approaches. Informed by our results, a
set of more general conditions under which spatial management
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is useful, and important factors influencing the success of static
or closures, are illustrated in Figure 8.

Static or Dynamic?
We found that closure performance depended on the distribution
of the species and the distribution of fishers. Static closures were
most successful for species with strong geographic associations
(LB1) and least successful for more dynamic species distributions
(LB2). Static closures were also less successful when they affected
popular ports with lower vessel mobility (LB2). Static closures
were effective at some objectives, with both the Static-obss
and Static-pred static closures achieving near-best leatherback
bycatch reduction for LB1. The Static-pred closure had less
impact on swordfish catch than Static-obss, so was overall the
best performing static closure (and occasionally with dimensions
remarkably similar to the existing PLCA, Supplementary
Figure 6.6). The success of the Static-pred closure highlights the
value of considering the bycatch risk relative to fishing effort
(Static-pred) rather than closing the area with most observed
bycatch (Static-obs). This is because the latter approach can
cause redistribution of fishing into higher risk areas and simply
shift the bycatch elsewhere (O’Keefe et al., 2014; Hoos et al.,
2019). Static-pred requires locations of fishing events whether
bycatch was caught or not, whereas Static-obs requires only
the location of bycatch. This means that Static-obs requires less

information and may be more easily created for fisheries with less
monitoring. However, the risk of unintended impacts from effort
redistribution under Static-obs is such that we encourage that
(for comparison with Static-obs closures) Static-pred closures be
developed using pseudo-absences (Barbet-Massin et al., 2012)
throughout the fishable domain.

Dynamic closures were clearly able to provide more balance
between target catch and bycatch, and over time provided similar
access to fishing grounds as the no closure strategy (Figure 6).
Dynamic closures did require a flexible fleet that was able to
fish any location reasonably accessible from port, and dynamic
closures may be most successful under conditions of low fishing
effort to avoid over-crowding in open pockets. There are practical
challenges to dynamic closures as well, for both managers and
fishers. For example, we used EcoCast to create dynamic closures
at the native scale of ROMS (0.1◦) in contrast to the current
0.25◦ version of EcoCast (Hazen et al., 2018; Welch et al., 2019a),
which meant closures had a very fine spatial and temporal
resolution. These closures may be difficult to enforce, challenging
to communicate and deliver to stakeholders, and fragmented
open areas may be difficult for fishers to locate and remain within.
There is a spectrum of ‘dynamic’ between completely static
and highly dynamic time-area closures, such as event-triggered
static closures (Welch et al., 2019b) and threshold type closures
(Hobday and Hartmann, 2006). There is much to be gained

FIGURE 8 | A summary schematic of the key factors indicating when spatial management (SM) is likely to be effective for bycatch mitigation (A), and a set of key
factors influencing closure dynamism (ranging from static to highly dynamic; B) and closure intensity (moderate to strict; C). For example, in our simulation the
dynamic Dyn-turts closure was most successful under the LB2 operating model (green circles), due to a dynamic leatherback distribution, high fleet mobility, and
moderate-high data availability (reduced only due to species rarity). A strict threshold was considered effective, due to the high conservation status of leatherbacks,
and due to a low fleet impact relative to other closure scenarios. Our LB2scal operating model, which simulated a broader leatherback niche, represented an
environment less suited to spatial management (orange circle), due to the reduced ability to relocate fishing effort from high-risk to low-risk areas. This schematic is
intended to summarize the key factors contributing to closure success, and these axes could be used to help direct early discussion of the suitability of dynamic
closures for other fisheries (but are not a replacement for quantitative analysis). For example, a fishery well suited for dynamic spatial management would have well
defined and dynamic distributions of target and bycatch species, and a fleet capable of being redistributed (without great economic impact).

Frontiers in Marine Science | www.frontiersin.org 15 March 2021 | Volume 8 | Article 630607

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-630607 March 16, 2021 Time: 14:17 # 16

Smith et al. Closure Management Strategy Evaluation

by exploring these options, especially when there is sufficient
data to quantify species distributions, but it is also essential to
understand the distribution and redistribution of fishing effort
(Powers and Abeare, 2009) and vessel mobility in order to
take full advantage of dynamic spatial management. Regarding
the current spatial closures used in the DGN (especially the
PLCA), our study indicates great potential for increased closure
dynamism due to the extensive observer program and availability
of ocean data, but incorporating precautionary ‘strict’ closure
thresholds (given the high conservation concern for sea turtles)
and a multi-tool approach given the very rare occurrence of turtle
bycatch (Figure 8).

Species with predictable distributions are most likely to benefit
from tailored spatial protection (Hyrenbach et al., 2000; Boerder
et al., 2019), but the nature of the predictability influences the
success of dynamic closures. Although both static and dynamic
closures were somewhat effective for LB1, static closures were
largely ineffective at bycatch reduction for LB2. This indicates
that the spatial structure of the species’ distribution matters,
and species with identifiable habitat but weaker geographic
associations may benefit most from dynamic tailored closures.
The perfect information closure (Dyn-turtsP) highlighted the
importance of predictive power, as it achieved best bycatch
reduction, but there were other important considerations. We
saw different predictive performance in the leatherback models
fitted to simulated observer data, in LB1 (AUC = 0.82) and LB2
(AUC = 0.66; Supplementary Table 3.1), yet the closures created
from these models achieved similar reduction in bycatch risk
(leatherbacks per set; Figure 5). This was likely due to the closures
in LB2 redistributing more effort (especially from the San Diego
port), indicating that a less accurate closure can still achieve good
bycatch avoidance by redistributing more effort.

In general, dynamic spatial closures will be most suitable for a
fishery in which (Figure 8): bycatch and target species have strong
preferences for specific dynamic habitats and have low spatial
overlap; bycatch is relatively common (to accurately estimate
bycatch risk, and as evidence that redistributing effort can reduce
bycatch); ocean and fishery data availability is high; fleet mobility
is high (to respond to varying closures); and environmental
variation is high (leading to a variable species distribution that
requires dynamic closures). Strict dynamic closures are also more
likely to be appropriate when the bycatch species is/are of high
conservation concern, when fleet impact (namely economic) is
comparatively low, and when there are no other suitable bycatch
mitigation tools. A fishery least suitable for dynamic closures as a
primary tool will have the opposite, with broad, static, strongly
overlapping or highly uncertain distributions of bycatch and
target species, and a fleet that cannot respond to closure changes
without severe economic impacts.

Single or Multi-Species?
Our simulation did not explore multispecies issues in great
detail, but it was clear that dynamic closures in this study could
not efficiently reduce bycatch of both leatherbacks and blue
sharks. Only when a closure was very large, causing the loss
of some fishing effort, was bycatch for both species reduced
(Dyn-multis and LB2; Figure 7). The viability of multi-species

protection will be case specific, and depend on the overlap
of the species’ distributions as well as the algorithm used for
this multi-feature prioritization problem (Welch et al., 2020).
Dynamic spatial management is a developing tool for mitigating
multi-species bycatch (Little et al., 2015). Our results, however,
indicate that if dynamic closures are aimed at reducing bycatch
of specific species (rather than bycatch of any species) then
incorporating more than a few species in closure design may
lead to ‘diminishing returns’ in bycatch reduction (Welch et al.,
2020). The advantages of dynamic closures in our study were
predominantly for closures weighted to a single species, and more
research is needed simulating dynamic closures for a variety of
species with different rarity, habitat associations, and home range
size. This will help identify the opportunities and limitations in
multi-species spatial management.

Bycatch Avoidance, Reduction, or
Target-Level?
There are two distinct processes relevant to bycatch mitigation
using spatial management: the redistribution of fishing effort,
and the reduction of total fishing effort. Time-area closures
will cause the first and can lead to the latter when the closure
is prohibitively large. Here, we discuss when, and how, time-
area closures are likely to be effective bycatch mitigation tools
given only redistribution of effort, and consider effort reduction
a separate tool.

Time-area closures will be effective at reducing bycatch when
effort can be redistributed to locations with lower bycatch risk
(Murray et al., 2000; Powers and Abeare, 2009; Hoos et al., 2019).
The long-run effectiveness of this redistribution will be directly
proportional to the difference in mean risk between the habitats
being fished before and after redistribution. If a species is widely
distributed throughout the fishable area, or has more similar
suitability throughout the domain (as in LB2scal), or if fishers
typically fish low risk habitat in the absence of spatial closures
(Keith et al., 2020), then effort redistribution is unlikely to be
an effective strategy for bycatch reduction. However, bycatch
reduction is only one objective, and our analysis highlighted
the value of evaluating bycatch reduction alongside other
objectives. We thus distinguish three management objectives:
bycatch avoidance, bycatch reduction, and target-level bycatch
reduction. ‘Avoidance’ refers to closing areas with high bycatch
risk regardless of how often they are fished. ‘Reduction’ refers
to reducing bycatch rates from current levels, which means at
least some fishing must be redistributed to lower risk areas.
‘Target-level reduction’ means reducing bycatch to a specific
level (e.g., a specific number of animals or interactions, e.g.,
a bycatch ‘hard cap’). Determining the appropriate objective
influences the types of bycatch mitigation tools used and how
spatial management should be used.

The dynamic closure approach we used in our study, i.e.,
using SDMs to avoid species, is certainly effective for a ‘bycatch
avoidance’ objective. This approach identifies and closes the
highest risk areas whether they are fished or not. For ‘bycatch
reduction’, SDM-based closures can still be effective (e.g., our
30–50% reduction in leatherback bycatch), but calculated closure
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thresholds need to consider the co-occurrence of species and
fishing (e.g., Howell et al., 2015; Eguchi et al., 2017) to ensure
some effort is redistributed to lower risk areas. For ‘target-
level reduction,’ a different approach is probably required. If
the desired level of bycatch is set, say at 10% of current
levels, then a closure needs to redistribute effort to specific
areas of known (i.e., predicted) bycatch risk. In this case,
a better closure design approach would be to identify areas
to leave open (rather than areas to close) based on the
estimated bycatch given a predicted level of fishing effort in
those open areas. For target-level reduction, and for cases in
which effort redistribution is unlikely to greatly reduce mean
bycatch risk, spatial management is probably best used as a
secondary tool to support other management tools, such as effort
control, gear modifications and increased gear selectivity, fleet
communications, or bycatch quotas (O’Keefe et al., 2014; Senko
et al., 2014; Swimmer et al., 2017; Sepulveda and Aalbers, 2018;
Holland and Martin, 2019).

Challenges for Dynamic Closures
Our study highlighted some issues for dynamic spatial
management that deserve further evaluation, relevant to
closure design, implementation, and simulation. A key challenge
for designing time-area closures will always be gathering
sufficient data on the distribution of species (especially rare
species). In our study, 20% observer coverage was sufficient to
create useful models of species’ distributions with 5 years of
data. This was also close to the minimum coverage required
to create a robust SDM, given our specified bycatch rate.
Less information, due to a lower bycatch rate or less observer
coverage, would likely require simpler SDMs, which may
reduce predictive power and closure accuracy. A useful level
of observer coverage depends on bycatch rate (Curtis and
Carretta, 2020), so while 20% was useful in our simulation
it is likely too low to create complex SDMs for the rarest
bycatch species in the actual DGN. EcoCast currently creates
SDMs from both fishery-dependent data and telemetry data
(Hazen et al., 2018), and in the case of species encountered very
rarely (e.g., leatherback turtles) relies only on the telemetry.
Telemetry data are essential for informing habitat suitability for
rarely encountered species, and while these data can indicate
the probability of presence they may not accurately indicate
catchability and thus the probability of being caught. This may be
especially important of probability of presence is used (linearly)
to determine closure thresholds. Thus, important research
avenues are continued investigation of biases associated with
using telemetry data to inform bycatch risk (Žydelis et al., 2011),
and exploring modeling approaches for integrating diverse data
sources (Grüss and Thorson, 2019) to integrate telemetry and
fishery-dependent catch data.

The environment was often a key driver of variation in
catch and bycatch (Supplementary Figure 6.10), so the more
accurately we can observe and model ocean change, species
distributions, and population abundance, the more effective
dynamic spatial management will be. But stochasticity was
another key component of this variation, arising predominantly
from how we sampled integer catches and which fishing sets

were observed. Rarer bycatch events will tend to represent the
mean risk with reduced precision (Martin et al., 2015), which
will typically lead to increased uncertainty in developing spatial
closures in the short term. We observed this uncertainty even
in the ‘perfect knowledge’ closure, which had perfect knowledge
of the mean catch rate only, and the integer catches given that
mean were random. There may be other statistical approaches for
simulating catches that identify this uncertainty differently (such
as using mixture models as operating models), but it may also be
that dynamic closures aimed at reducing very rare bycatch events
are subject to strong stochasticity (Figure 8). This unavoidable
uncertainty should be reflected in the resolution of the closure
or in the general management approach (e.g., whether time-area
closures are used in concert with other tools).

A valuable research priority is if, and how, closure resolution
should reflect model uncertainty. Practical considerations
relevant to enforcement and fisher planning will influence
the resolution and design of dynamic closures, as should the
magnitude, periodicity, and predictability of bycatch (Dunn
et al., 2011; Welch et al., 2018). But incorporating model
uncertainty in the temporal and spatial resolution of a closure
will be more challenging. It seems intuitive that increased
uncertainty in a species’ distribution and catchability would
encourage a coarser resolution of a dynamic closure; e.g., if the
predicted bycatch risk at two locations (or dates) cannot be
distinguished with statistical clarity, then they should share the
same open/closed status. Further research is needed on the scales
of SDM predictability, and temporally and spatially structured
cross-validation procedures (Roberts et al., 2017) or spatial
autocorrelation analysis (Dunn et al., 2011) may be a useful
avenues for quantifying the relationship between predictive
power and closure resolution. Advancing the measurement
and communication of uncertainty in bycatch risk, alongside
the integration of real-time and forecast ocean and bycatch
data, will help ensure that dynamic spatial closures make a
robust contribution to the management of bycatch in dynamic
environments.
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