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ARTICLE INFO ABSTRACT

When assessing harmful human-wildlife interactions, researchers often attempt to calculate the risk that an
interaction will occur. However, these analyses often quantify risk based on temporally static or spatially coarse
measures of species distributions and human activity. As a result, risk estimates often do not reflect the dynamic
nature of animal movement and anthropogenic uses of the environment. To illustrate the impacts of various
temporal resolutions of data, we present a case study of blue whale (Balaenoptera musculus) ship strike risk in the
U.S. Southern California Bight by combining predicted daily whale distributions with continuous vessel move-
ment data. This represents the first effort to characterize blue whale ship strike risk by including the most recent
high-resolution estimates of eastern Pacific blue whale distribution. We used these data to compare the ship
strike risk models at varying temporal resolutions to address the effect of using coarser resolution input data. Our
results show that it is critical to account for both dynamic patterns of human activity and species occurrences
when assessing the risk of human-wildlife conflict. Analysis based on higher resolutions of potential interactions
show greater variability in risk. Coarser resolution data mask variability in risk that may result from patchy
conditions of blue whale habitat and/or variations in vessel traffic. We also demonstrate that coarser temporal
resolutions lead to overestimations of risk. For highly mobile species subject to human-wildlife interactions such
as blue whales, long-term environmental solutions depend on matching ecological data to human activity data at
the most appropriate scale.
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1. Introduction

Human-wildlife conflicts occur when anthropogenic uses of the
environment and wildlife coincide in space and time (Nyhus, 2016).
These interactions often result in adverse effects on either humans,
wildlife, or both (Conover, 2002). Although human-wildlife conflicts
can take various forms and result in varying degrees of severity and
impact, the most serious conflicts result in population decline or ex-
tinction (Nyhus, 2016). Natural resource managers have attempted to
mitigate these interactions through conflict management, but several
barriers (e.g. lack of information and setting unattainable goals) can
prevent effective negotiation of solutions and long-term successful
management strategies (Redpath et al., 2013).

Identifying management strategies for highly mobile species that
also account for environmental variability can be even more challen-
ging, but is crucial to ecosystem health and sustainability (Maxwell
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et al., 2015). While marine ecosystems are dynamic in space and time,
marine spatial management evolved from the largely static approaches
used in terrestrial systems (Briscoe et al., 2016; Game et al., 2009). In
contrast to traditional, static management approaches, dynamic man-
agement integrates near-real time data to guide the spatial and tem-
poral distribution of management efforts to be more closely aligned
with variability in the marine environment, species distributions, and
resource use (Dunn et al., 2016; Maxwell et al., 2015). Consequently,
there has been increasing effort to predict changing environmental
conditions (Cai et al., 2014; Keeling et al., 2010), species distributions
(Araujo and New, 2007; Jones and Cheung, 2015), and highly mobile
species migrations (Anderson et al., 2013; Block et al., 2011; Hazen
et al., 2013). However, for management schemes to be successful, they
must rely on accurate information quantifying human activities within
the same spatial and temporal scales as the natural resources being
protected. Here we examine a case study involving blue whales
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Fig. 1. Study area of the Southern California Bight displaying the Channel Islands National Marine Sanctuary (CINMS) and Transit Separation Scheme (TSS)

boundaries leading to Ports of Los Angeles and Long Beach.

(Balaenoptera musculus) and ship strikes in the Southern California
Bight, where there is a rare opportunity to match a new high-resolution
species distribution model to fine scale vessel tracking data in space and
time.

Global transportation networks continue to increase as technology
accelerates and the human population continues to grow (Nyhus, 2016;
Tournadre, 2014). As a result, transportation-related human-wildlife
interactions are becoming more common and one of the most persistent
forms of conflict (Conover, 2002). It is also one of the deadliest conflicts
for both humans and wildlife (Nyhus, 2016). The collision between
vessels and whales (‘ship strikes’) occur on a global scale and can cause
injuries and fatalities in marine mammals (Pirotta et al., 2019). Because
many marine mammal populations are still threatened as a result of
historical whaling, even relatively low levels of mortality due to human
interactions can have catastrophic impacts (Clapham et al., 1999). The
total effect of ship strikes on whale populations is unclear, as reported
whale-vessel collisions likely represent only a small percentage of strike
occurrence due to low detection rates (Laist et al., 2001). While some
management and legislative frameworks have reduced the number of
ship strikes (Conn and Silber, 2013), most are voluntary and face low
compliance, which have proven ineffective to mitigate the likelihood of
ship strikes (van der Hoop et al.,, 2015). Because it is difficult for
managers to accurately assess the magnitude of strike incidence to
whale populations, researchers have aimed to characterize collision risk
between whales and various vessel types (Rockwood et al., 2017;
Abrahms et al., 2019; Keen et al., 2019).

When assessing ship strike risk for whales, studies typically predict
species distributions by collating movement or observer data (Irvine
et al., 2014; Hazen et al., 2017; Rockwood et al., 2017). However, to
accurately predict the incidence of these potentially lethal interactions,
it is critical to also account for patterns of shipping traffic (Moore et al.,
2018; Keen et al., 2019). While density of vessel traffic is often ac-
knowledged as an influential factor worthy of consideration (Dransfield
et al., 2014; Hazen et al., 2017; Redfern et al., 2013), it is rarely ana-
lyzed at the same temporal and spatial scales as blue whale occurrence
or distribution models. Estimated whale mortality due to cryptic

mortality events such as oil spills and ship strikes is estimated to be
nearly ten-fold higher than is currently documented from carcass re-
coveries alone (Williams et al., 2011). Previous research has in-
corporated fine-scale vessel movement data, but has relied on static or
seasonal blue whale distributions (Redfern et al., 2013; Rockwood
et al., 2017) that do not account for the large amounts of variation in
space use at finer timescales that are typical of highly mobile species
(Abrahms et al., 2019). In fact, recent work has shown that coarse
scales of spatial analysis can obscure estimates of overlap and risk
(Kroodsma et al., 2018a, 2018b).

Recent advances in tracking technology, ecological modeling, and
data science now allow unprecedented opportunity to use eco-infor-
matics toward human-wildlife conflict management solutions such as
ship strike mitigation (Hays et al., 2019; Hazen et al., 2018). An in-
novation in high-resolution predictions of daily blue whale habitat
suitability (Abrahms et al., 2019) allows a direct comparison with
globally available high-resolution vessel movement data (Kroodsma
et al., 2018a; Moore et al., 2018). Here, we detail this case study to
examine trends in overlap between blue whale habitat and shipping
vessels at nested timescales to determine when and where blue whales
are most at risk of ship strike in the Southern California Bight (SCB). We
further examine the impact of the temporal resolutions of our data to
explore consequent effects on risk estimation. Combining predicted
daily whale distributions with continuous vessel movement data re-
presents the first effort to characterize blue whale ship strike risk by
including the newest and most high-resolution estimates of eastern
Pacific blue whale distribution. We use these data to compare the ship
strike risk models at varying temporal resolutions to address the effect
of using coarser resolution input data.

2. Methods
2.1. Study area

We calculated blue whale risk of ship strike within the SCB (33° N to
35°Nand 117° W to 121° W; Fig. 1). The SCB encompasses the Channel
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Islands National Marine Sanctuary (CINMS) — an 3800 square kilometer
region where dense patches of euphausiids provide a seasonally highly
productive feeding area for blue whales (Fiedler et al., 1998; Sirovic
et al., 2015). The SCB also contains the Ports of Los Angeles and Long
Beach, two of the world's busiest seaports (WSC, 2017). A shipping lane
to these ports (i.e. Traffic Separation Scheme (TSS)) intersects with the
CINMS which is considered important whale habitat (Calambokidis
et al., 2019; Fiedler et al., 1998). Following implementation of the
California Air Resources Board's Ocean-Going Vessels Fuel Rule (CARB
rule) in 2009 and a narrowing of the TSS by the International Maritime
Organization (IMO) in 2013, 40% of shipping vessels shifted their in-
coming and outgoing tracks south of the Channel Islands, outside the
TSS (Moore et al., 2018). In this study, we analyzed data from the entire
SCB for four years (2011, 2013, 2015, 2017) to represent a variety of
both climatic conditions and spatial vessel behavior.

2.2. Blue whale habitat suitability

Abrahms et al. (2019) generated daily, year-round predictions of
blue whale habitat suitability for each year from a dynamic ensemble
species distribution model. The model relates daily satellite tracking
data from 104 blue whales to daily surface and subsurface environ-
mental data sourced from the California Current Regional Ocean
Modeling System (CCROMS; Neveu et al., 2016; Moore et al., 2018).
Habitat suitability ranged from O to 1, with 1 representing most suitable
habitat. Abrahms et al. (2019) used extensive cross-validation on sa-
tellite tag data, as well as independent validation using the largest
compilation of blue whale sightings to date to demonstrate a strong
relationship between suitability and occurrence. Point biserial corre-
lation with independent sightings data resulted in a p-value < 0.001
and the Area Under the Receiver-Operator Curve metric, which mea-
sures true-positive versus false-positive rates on a 0-1 scale, resulted in
a score of 0.95. See Abrahms et al., 2019 for further detail on model
performance evaluation. Daily spatial predictions of blue whale habitat
suitability, used as a proxy for probability of occurrence for the purpose
of this study (Elith and Leathwick, 2009; Guisan and Thuiller, 2005;
Havron et al., 2017), were generated on a 10 X 10 km grid throughout
the CCROMS domain to match the finest spatial resolution of the
available environmental data. See Abrahms et al. (2019) for further
detail.

2.3. AlIS shipping data

We collected tanker and cargo AIS shipping data from the ship-
tracking data housed on MarineCadastre.gov (www.marinecadastre.
gov/AlS/data). Passenger vessels were excluded due to large incon-
sistencies in AIS usage over the study period. AIS records are pre-fil-
tered to consistent time series at one observation per minute per vessel.
We filtered data to include only observations with an AIS Status clas-
sified as ‘underway using engine’ to exclude points where vessels were
anchored or otherwise not traversing. Observations within 3 nautical
miles from the coastline and observations with speeds below 1 knot
were also excluded from all analyses to prevent analysis on portions of
tracks where vessels were anchored, closely approaching or sitting at
port, or loading and unloading. Speed over ground was extracted from
the raw AIS data and prepared for analyses by MarineCadastre.gov. We
aggregated data at a daily time step and at a resolution of 10 x 10
kilometers, to match both the temporal and spatial resolution of the
blue whale prediction model described above. Vessel density ranged
from O to 1, with 1 representing the highest density raster cell.

We assessed spatial patterns of vessel speed within the study area
with the ‘raster’” R package (Hijmans, 2019). We determined the
number of unique vessel identification (i.e. MMSI) codes present in the
study area during each day of the year. Daily vessel density was cal-
culated via the number of unique voyages in each 10 X 10 kilometer
grid cell each day.
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2.4. Risk of interaction

We analyzed vessel and whale probability data at several nested
time scales — daily, weekly, monthly, quarterly, and annually - to
identify variation in interaction likelihood at each scale. We first cal-
culated risk of interaction for each grid cell on a given day with Eq. (1):

Risk,; = D(Vessel),; x P(Whale),; (€8]

where D(Vessel); represents the density of vessels traveling over 10
knots within grid cell i on day t and P(Whale), represents blue whale
probability of occurrence, as described above, for grid cell i on day t
(adapted from Vanderlaan et al., 2009). This method resulted in a re-
lative spatially explicit interaction risk index (Risk,). After calculation,
Risk,; was rounded to the nearest tenth. By subsetting data to include
only vessels traveling over 10 knots, we identified potential interactions
that likely result in severe injury or fatality (Silber et al., 2010).

To evaluate the average risk over the entire spatial domain (n) per
day, we used a spatially-weighted average (Ay). A is calculated as:

A=Y (Risky (Wris,)) -

Whiska represents the weight of Risk,; relative to all other Risk values
within the study area on day t (Eq. (2)). We determined weight (Wrisku)
by first calculating the area of each Risk value in the study area (i.e.
Areag;skq) followed by the division of Areag;s, by the total study area
(Area,yq;) detailed in Eq. (3):

Area Riskii

Whisky =
Kiska Arealolal (3)

Weight (W) represents the total spatial area of Risk,; relative to
the study area, such that a Risk value with a larger spatial area is
weighted more than a Risk value with a smaller spatial area. A, allows
for a single average risk score to be calculated for the study area each
day. As a result, we are able to compare average risk for the study area
across each day included in the study. We used Mann-Whitney U non-
parametric tests, as data were non-normally distributed, to assess the
statistical differences in daily average risk (n = 364) by year.

We used Egs. (1), (2), and (3) to calculate risk at the weekly,
monthly, and quarterly temporal scale. However, prior to computation
of risk in Eq. (1), daily rasters of blue whale probability of occurrence
and vessel density were first averaged by week, month, and quarter for
their respective assessments to explore the effects of reduced temporal
resolutions. We completed all analyses in R version 3.6.1 (Core Team,
2018).

3. Results
3.1. Spatial patterns of risk

Differences in spatial concentrations of vessel activity emerged
when risk rasters were averaged across each year. Vessel activity be-
came more concentrated north of the Channel Islands over time
(Fig. 2a-d). The four study years demonstrate a variety of vessel spatial
patterns (Fig. 2a-d). Spatial areas of whale probability were largely
consistent across the four years (Fig. 2i-1), however average whale
probability was higher across a broader spatial area in 2015 (Fig. 2k).
Spatially, risk does not vary much on finer temporal scales, and instead,
risk followed a similar interannual spatial pattern to vessel activity,
meaning that risk is largely driven by the vessel traffic distribution.
Vessel activity, and subsequent risk, was most spatially concentrated in
2017 (Fig. 2p) and most diffuse in 2013 (Fig. 2n).

3.2. Ddily patterns of risk

Each year followed a similar within-day time series trend, where the
number of unique vessels per hour increased from hour 00:00 PST
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Fig. 2. Aggregation of daily results each of the four
years of the study period highlighting interannual
variability in spatial patterns of risk. Average daily
vessel density in a) 2011, b) 2013, ¢) 2015, d) 2017.
Average speed of a vessel track passing through grid
cell i in e) 2011 f) 2013, g) 2015, h) 2017. Average
daily blue whale habitat suitability, as a result of the
dynamic daily ensemble model (Abrahms et al.,
2019) in i) 2011 j) 2013, k) 2015, 1) 2017. Average
daily risk of interaction in m) 2011, n) 2013, o)
5 2015, p) 2017. Zero risk (usually due to a lack of
vessel activity) is represented by gray cells.
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Fig. 3. Time series highlighting diel patterns of risk. Average number of unique vessels per hour traveling through the SCB for each year in the study for a) cargo
vessels and b) tanker vessels. ¢) Time-depth dive profile for a blue whale tagged in the study region (reprinted from Friedlaender et al., 2015).

through 10:00-11:00 PST, followed by a slight decrease through 24:00
PST (Fig. 3a-b). Blue whale dive depth studies show strong diel patterns
in time spent at the ocean surface, where they make consistent dives to
depths of 100 to 300 m 07:00-20:00, followed by a period of surface
behavior from 20:00 to 07:00 (Fig. 3e; Calambokidis et al., 2019;
Friedlaender et al., 2015). Although we are unable to calculate risk at
finer temporal scales than the blue whale distribution model (Abrahms
et al., 2019), we can use these data to deduce that strike risk is likely
higher at between hours of 20:00 and 07:00 when blue whales are
spending the majority of their time at the surface.

3.3. Seasonal and interannual patterns of risk

The number of unique vessels per day was consistent throughout the
annual cycle of each year (Fig. 4a-d). The median average speed and

interquartile range for both cargo and tanker vessels exceeded 10 knots
for all four years of the study, however cargo vessels averaged higher
speed than tanker vessels (Fig. Al). Although vessel activity was tem-
porally consistent throughout the year, whale presence was not. In both
2011 and 2013, average daily whale probability in the SCB was low
until April, when habitat suitability increased rapidly through the start
of June. High blue whale probability continued through October, at
which point it steadily declined through November (Fig. 4e-f). Anom-
alous conditions during the El Nifio and marine heatwave of 2015 and
warm water conditions of 2017 resulted in more variable habitat suit-
ability in both years, and included periods of relatively high blue whale
probability as early as March and as late as November (Fig. 4g-h).
Temporally, risk of interaction varied within and among years
(Fig. 4i-1). Mimicking the temporal pattern of whale probability, 2011
and 2013 resulted in highest daily risk in July—October, reaching a



H. Blondin, et al.

2011 b 2013 2015

No. Unique Voyages

Biological Conservation 250 (2020) 108757
2017 Fig. 4. Time series for each of the four years of the
study period highlighting intra-annual variability in
risk. Number of unique voyages in the SCB by year
day in a) 2011, b) 2013, c) 2015, d) 2017. Average
(spatial mean * SD) blue whale habitat suitability
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maximum relative risk in July and August (Fig. 4i-j). In 2015 and 2017,
periods of high risk occurred as early as March and as late as November
(Fig. 4k-1). In 2015, a spike in risk was calculated in March - due to both
an increase in whale probability and an increase in vessel activity.

Average daily risk is represented as ratios rather than values with
units as both whale habitat suitability and vessel traffic were first scaled
from O to 1 prior to risk calculations using Egs. (1), (2), and (3).
Average daily risk was 4.3% in 2011, 5.7% in 2013, 6.5% in 2015 and
5.8% 2017 (Fig. 5). Mann-Whitney U tests revealed a statistically sig-
nificant difference in risk between 2011 and 2013 (p < .01,
W = 53,802), 2015 (p < .01, W = 43,712), and 2017 (p < .01,
W = 49,070), and between 2015 and 2017 (p < .05, W = 72,328),
but not between 2013 and 2015 (p = .18, W = 62,480) or 2013 and
2017 (p = .76, W = 65,395).
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Fig. 5. Average daily risk of ship strike by temporal scale of analysis for 2011,
2013, 2015, and 2017.

yearday

3.4. Effect of decomposing temporal resolutions

When risk was calculated at temporal scales coarser than daily, risk
was overestimated (Fig. 5). In 2015, average daily risk was 9.4% when
risk was calculated at a quarterly (i.e. seasonal) scale — a 44% increase
when compared to when risk was calculated at a daily time step. Similar
discrepancies exist among temporal scale calculations in 2011, 2013
and 2017.

4. Discussion

Our study integrates daily predictions of blue whale probability of
occurrence with high resolution vessel tracking data for the first time to
characterize ship strike risk via simultaneous ecological and socio-
economic data matched in space at multiple temporal scales. While
previous studies have begun to characterize blue whale ship strike risk
using both species probabilities and vessel tracking data (Redfern et al.,
2013, 2019; Rockwood et al., 2017), the use of static species distribu-
tion models may give the incorrect impression that overlap is consistent
within a season or from year to year. While this may be true on average,
this approach misses seasonal and interannual variability, as well as
finer scale spatial patterns that occur both as a result of changes in the
highly migratory species' habitat suitability as well as human behavior.

4.1. Evaluation of risk and potential conservation actions

The hourly analysis of vessel traffic indicated that shipping activity
is more prevalent during the day, but still consistently occurs at night.
As such, to address intra-day management options, managers can refer
to blue whale diurnal behavioral patterns to estimate intra-day patterns
in risk. Previous studies concluded that diving behavior in blue whales
follows a consistent diurnal pattern where blue whales feed at shal-
lower depths during dusk and spend the majority of time at the surface
at night (Calambokidis et al., 2019; Friedlaender et al., 2015). These
findings indicate that, similar to fin whales (Keen et al., 2019), ship
strike risk would be highest during nighttime hours (19:00-06:00 PST),
which poses a problem for visibility in terms of recognizing that an
animal has been struck.

Previous studies indicated that strike risk is concentrated along
major TSSs (Redfern et al., 2019; Rockwood et al., 2017), however our
study specifies that areas outside the TSS are also important to consider
when vessels alter their spatial behavior (sensu Keen et al., 2019).
Changes in the spatial behavior of the shipping industry is often in
response to new regulations (Moore et al., 2018). Continuous vessel
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movement data provided more spatially explicit results and better-in-
formed risk intensity relative to studies which overlay habitat suit-
ability models with static shipping lanes or other hypothetical measures
of vessel traffic. Future studies would benefit from assessing vessel re-
sponse, or lack thereof, to previously implemented regulations to pre-
dict response to potential future changes in policy such as shifts and
extensions of the TSS or expansion of the area to be avoided (ATBA).

In contrast, predicted whale migratory behavior and their responses
to interannual fluctuations in environmental conditions led to high
temporal variability in their distributions both seasonally and inter-
annually. Our results confirm that a “normal” climatic year (e.g. 2011,
2013) results in highest risk of strike during the months of June through
October (Abrahms et al., 2019; Redfern et al., 2013), but also that
average risk intensity was greater and extended over a longer portion of
the annual cycle during an El Nifio year (e.g. 2015).

Consequently, both whale habitat probability of occurrence pre-
dictions and rates of vessel activity are both important when con-
sidering overall interaction risk intensity on a daily, weekly, monthly,
seasonal, or inter-annual scale. In 2007, more blue whale deaths due to
ship strikes were reported than any other year on record. Blue whales
were also more abundant in the Southern California Bight during 2007
than in previous years, particularly within shipping lanes where patches
of krill were also present (Berman-Kowalewski et al., 2010). Positive El
Nifio/Southern Oscillation (ENSO) conditions were present in early
2007 (NOAA NCEI, 2008), which could indicate that higher reported
rate of ship strikes were correlated with these anomalous environ-
mental conditions. With projected increases in frequency of extreme El
Nifio events (Cai et al., 2014; Wang et al., 2017) and projected increases
in vessel traffic to 2050 (Sardain et al., 2019), this trend may continue
leading to an increase in daily risk.

4.2. Influence of temporal scale

Coarse resolution data mask spatial and temporal variability in risk
that may result from patchy conditions of blue whale habitat and/or
variations in vessel traffic. Further, coarser calculations of risk result in
an overestimation of average risk (Table 1; Fig. 5) which could reduce
the efficiency of management strategies and/or lead to the misalloca-
tion of limited conservation resources. At coarser temporal scales,
variability in whale presence and vessel density within cells is dam-
pened, meaning the mean at coarser time scales is skewed higher by
outliers in whale presence and vessel density. The daily calculations of
risk are more informative regarding both variability of calculated risk
and of which cells more consistently display co-occurrence of human
and whale activity and which cells contain anomalies of co-occurrence.

While exploring the impact of spatial resolution of input data was
not considered in this study, it may be beneficial to consider in future
studies. The Abrahms et al. (2019) SDM was developed using the finest
spatiotemporal scale available for environmental data within the spatial
domain (i.e. daily temporal resolution, 10 X 10 km spatial resolution).
It is unknown how skillful SDMs would be at higher spatial resolution,
however, Scales et al. (2017) showed that 3-100 km for a hypothetical
blue whale SDM were all very similar in skill. Finer spatial scales may
allow for greater separation between whale distribution and presence of
risk.

Transportation related conflicts with megafauna are becoming

Table 1
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increasingly common due to increased density of humans in marine and
terrestrial environments (Nyhus, 2016; Pirotta et al., 2019; Conover,
2002; National Wildlife Research Center, 2007). Transportation related
conflicts, including ship strike risk and traffic density, have even hin-
dered recovery of endangered populations such as North Atlantic Right
Whales and Southern Resident Killer Whales (Kraus et al., 2005;
Lusseau et al., 2009). Areas where highly-variable oceanographic con-
ditions influence the space and time use of the area by migratory ani-
mals, and human behavior (e.g. ship routing) is influenced by economic
factors such as the SCB, it is important to consider human-wildlife
conflict at a temporal resolution that captures these variabilities.

A recent study by Redfern et al. (2019) evaluates specific manage-
ment options in our study area, such as adding a shipping lane to the
SCB, expanding the whale area to be avoided, and reducing ship speeds
— highlighting the importance of the risk assessment presented here to
inform future management perspectives (Redfern et al., 2019). Rather
than only focusing on the biophysical predictions of blue whale pre-
sence in the area, to optimize management measures, managers should
likely consider both predicted whale density and predicted risk. For
example, it may be preferable to prioritize areas of highest risk, which
may differ than the areas of highest whale density. It further may be
advantageous to prioritize the areas of high risk that have high whale
density but fewer ships, rather than areas that have large numbers of
ships but lower whale density, even if resulting risk is the same in both
cases. Although dynamic management is more difficult to implement
within the shipping industry due to economic costs (Lewison et al.,
2015), a daily analysis in risk could indicate when strike risk crosses a
“threshold” indicating that a management strategy, such as a manda-
tory slow down, needs to be activated within a specific area. Further,
successful conflict management also depends on understanding the
species-specific characteristics (e.g. foraging behavior, nocturnality)
that can influence when and where these conflicts are likely to occur
(Snow et al., 2015).

4.3. Data science and near-real time technology

Effective conservation and management rely on an accurate un-
derstanding of where and when threats to species occur. In the absence
of continuous observations, we must rely on modeled distribution data
to predict species occurrence (Elith and Leathwick, 2009). Dynamic,
high spatiotemporal resolution species distribution models, such as the
one used in this analysis offer a major advancement in the ability to
predict and assess risk at relevant ecological scales (Abrahms et al.,
2019). However, it is equally important to distill high-resolution socio-
economic data to refine patterns of human activity at multiple time
scales. Continuous anthropogenic data can provide more spatially ex-
plicit results and better inform when and where human-wildlife conflict
occurs. These methods can also be used to forecast human-wildlife in-
teractions based on projected climatic conditions and policy im-
plementations to ensure they are climate-ready (Hazen et al., 2018).
Our study highlights the continuing need for the combination of human
risk and animal space use via eco-informatics when assessing interac-
tions between economic and ecological uses of the same environment to
solve complex global environmental issues.

Daily risk of ship strike by time scale averaged to each year with standard deviation.

Temporal scale 2011 2013 2015 2017

Quarterly 0.054 *= 0.048 0.073 = 0.056 0.094 = 0.028 0.079 = 0.052
Monthly 0.055 + 0.049 0.073 = 0.057 0.09 + 0.031 0.076 = 0.049
Weekly 0.051 + 0.046 0.069 = 0.052 0.082 =+ 0.029 0.071 = 0.043
Daily 0.043 = 0.037 0.057 = 0.043 0.065 = 0.024 0.058 = 0.034
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