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A B S T R A C T

Understanding the drivers of movement, migration and distribution of individuals is important for insight into
how species will respond to changing environmental conditions. Both abiotic and biotic factors are thought to
influence migratory behavior, but their relative roles are difficult to disentangle. For migratory marine pre-
dators, both temperature and prey availability have been shown to be significant predictors of space use, though
often researchers rely on physical proxies due to the lack of data on dynamic prey fields. We generated spatially
explicit individual-based movement models to evaluate the relative roles of abiotic (sea surface temperature;
SST) and biotic (prey availability) factors in driving blue whale (Balaenoptera musculus) movement decisions and
migratory behavior in the eastern North Pacific. Using output from a lower trophic ecosystem model coupled
with a regional ocean circulation model, we parameterized a blue whale movement model that explicitly in-
corporates prey fields in addition to physical proxies. A model using both SST and prey data reproduced blue
whale foraging behavior including realistic timing of latitudinal migrations. SST- and prey-only population
models demonstrated important independent effects of each variable. In particular, the SST-only model revealed
that warm temperatures limited krill foraging opportunities but failed to drive seasonal foraging patterns,
whereas the prey-only model revealed more realistic seasonal and interannual differences in foraging behavior.
Our individual-based movement model helps elucidate the mechanisms underlying migration and demonstrates
how fine-scale individual decision-making can lead to emergent migratory behavior at the population level.
Moreover, determining the relative effects of the physical environment and prey availability on the movement
decisions of threatened species is critical to understand how they may respond to changing ocean conditions.

1. Introduction

Animal migration is at once a critically important and a globally
threatened ecological process (Bauer and Hoye, 2014; Wilcove and
Wikelski, 2008). Migration increases survival by enabling animals to
exploit seasonally available resources, transports nutrients, propagules
and pathogens between ecosystems, and facilitates trophic interactions
by moving large numbers of predators or prey over wide ranges
(Bauer and Hoye, 2014). Migratory species are also among those most
at risk from human-induced rapid environmental change (Horns and
Şekercioğlu, 2018; Wilcove and Wikelski, 2008), necessitating an un-
derstanding of the ecological and environmental underpinnings of this
behavioral phenomenon. Though migration for many species is often
understood to be a means for reaching distinct breeding and foraging
ranges to enhance survival and reproduction (Dingle and Drake, 2007),

a range of drivers can influence finer-scale foraging patterns within a
larger-scale seasonal migratory behavior. On a daily scale, migratory
animals have to decide whether to remain in a foraging hotspot or move
to a new foraging ground based on present and past conditions
(Abrahms et al., 2019a; Palacios et al., 2019). Mechanisms influencing
migratory behavior and space use range from endogenous factors such
as memory (Abrahms et al., 2019a; Bracis and Mueller, 2017; Scott
et al., 2014) and navigational capacity (Lohmann et al., 2008), to
exogenous factors such as social information (Guttal and Couzin, 2010;
Jesmer et al., 2018; Mueller et al., 2013) or predation pressure
(Fryxell and Sinclair, 1988).

Bottom-up processes including responses to environmental cues and
tracking of resource availability have also been shown to profoundly
affect an animal’s movement decisions during migration (Merkle et al.,
2016; Thorup et al., 2017). These environmental drivers can be either
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biotic, such as forage availability, or abiotic, such as temperature,
snowfall, or water availability, and, importantly, can differ in their
importance by the spatial scale of inquiry. For instance, forage quality
(biotic) and water availability (abiotic) were shown to drive broad-scale
spatial distribution patterns in wildebeest migrations, though biotic
factors alone drove distributions at finer spatial scales (Holdo et al.,
2009). Similarly, primary production and water temperature have been
shown to be significant predictors of broad-scale distribution patterns
for many migratory marine predators (Block et al., 2011; Hazen et al.,
2013), but prey availability is hypothesized to dominate space use over
abiotic factors at local scales (Benoit-Bird et al., 2013; Hazen et al.,
2009; Kenney et al., 2001).

Given the challenges in monitoring migratory species and their
environments over large spatial extents and timeframes, the relative
roles of biotic and abiotic factors in driving the fine-scale movements
and timing of migratory megafauna are difficult to disentangle in many
systems. This is especially true for marine migrants, for which habitats
can shift at daily to weekly timescales (Steele and Henderson, 1994)
and physical proxies are often used in absence of dynamic prey fields
(Abrahms et al., 2018; Croll et al., 2005; Owen et al., 2018; Scales et al.,
2014). Nevertheless, identifying the dominant bottom-up processes and
thresholds for decisions driving foraging migration is key to adequately
capture seasonal movement patterns, interannual variability in migra-
tion timing, interaction with anthropogenic threats, and anticipating
the responses of migratory species to environmental change.

We developed a spatially-explicit, individual-based model (IBM) to
tease apart the biotic and abiotic drivers of fine-scale movements
leading to emergent migratory behavior for a marine predator, the blue
whale (Balaenoptera musculus). Blue whales are the largest animal to
have lived on the planet, and their large energetic demands and re-
quirement for dense patches of krill have spurred the evolution of their
physiology and foraging behavior (Goldbogen et al., 2011; Goldbogen
et al., 2015; Slater et al., 2017). In order to maximize their energetic
gain and reproductive success, blue whales like many baleen whales
migrate from tropical breeding grounds to temperate or arctic feeding
grounds annually, timing their migration to reliable peaks in their prey,
krill (Abrahms et al., 2019a; Fossette et al., 2017). In the eastern North
Pacific, blue whales perform latitudinal migrations between winter
breeding grounds off the coast of Central America and in the Gulf of
California and summer feeding grounds that extend from Baja Cali-
fornia to Washington state in the California Current System (Bailey
et al., 2009; Irvine et al., 2014).

Previous models aimed at understanding blue whale movements
have focused on species-habitat relationships, using environmental
proxies for prey to explore where and when the whales occupy the
California Current. These have included static models based on ship-
board sightings (Becker et al., 2016; Redfern et al., 2019), photo-ID
work (Calambokidis et al., 2015), global models based on sea surface
height alone (Pardo et al., 2015), foraging models (Palacios et al., 2019)
and dynamic models based on changing oceanography (Abrahms et al.,
2019b; Hazen et al., 2017). Many of these models have found that sea
surface temperature, mixed-layer depth, and chlorophyll-a were most
correlated with blue whale habitat, often tracking the seasonality of
upwelling dynamics. Chlorophyll-a represents a direct proxy for pro-
ductivity and krill aggregations (Abrahms et al., 2019a; Bailey et al.,
2012; Suryan et al., 2012), whereas temperature may indicate ag-
gregative features that can concentrate prey (Palacios et al., 2019;
Scales et al., 2014). Mixed-layer depth is often an ocean-model derived
variable that is used instead of chlorophyll-a with similar predictive
capacity (Becker et al., 2016). In addition, stochastic dynamic pro-
gramming techniques have been used to develop models that integrate
habitat patch quality and energy demands of lactating females to
identify optimal movement decisions (Pirotta et al., 2019; Pirotta et al.,
2018). However, these studies lack explicit information on the dis-
tribution of prey aggregations, which are known to significantly shape
blue whale space use and foraging decisions (Hazen et al., 2015).

Individual based models (IBMs) provide an alternative framework
that treat individuals as autonomous agents. Each individual is pre-
scribed a set of deterministic or stochastic rules that inform and update
the behavior, movement, or interaction of agents. Ensembles are cre-
ated by the simulation of many agents, allowing for inference of po-
pulation statistics, geographic locations, and emergent behaviors, while
still retaining the discreteness and variability of individuals and small
populations. A strength of IBMs is the ability to test individual decision
processes and mechanisms underlying emergent behaviors and self-or-
ganization. Examples include flocking of starlings (Hildenbrandt et al.,
2010), stripe formation in zebra fish (Volkening and Sandstede, 2015),
and aggregation of locusts into destructive hopper bands (Bernoff et al.,
2020). From a population modeling standpoint, IBMs have successfully
been used to explore the distributions and behaviors of marine and
terrestrial animals, including sea lions (Fiechter et al., 2016), juvenile
chinook salmon (Fiechter et al., 2015), sardine and anchovy (Fiechter
et al., 2015; Rose et al., 2015), Icelandic capelin (Barbaro et al., 2009),
and caribou (Latombe et al., 2014). In the context of blue whale po-
pulations, emergent processes are a result of individual decisions and
include both behavioral and spatiotemporal aspects such foraging rates
and the timing of migrations.

The objective of this paper is two-fold: first we introduce an IBM
framework that reproduces observed behaviors of blue whales in the
California Current System, and then explore model ensembles to ex-
amine contributions from abiotic (temperature) and biotic (krill avail-
ability) factors on migratory behavior. Including explicit realistic
movement of individuals adds information about the temporal acces-
sibility of habitats by considering transit speeds and foraging oppor-
tunities; details ignored by species distribution models, other correla-
tive techniques, and the stochastic dynamic programming models.
Specifically, we compare the independent and combined effects of sea
surface temperature and krill availability on (1) foraging behaviors and
latitudinal distributions of the blue whales during their northward
migration, and (2) transition to southward migrations. This compara-
tive approach allows us to evaluate the relative importance of biotic
and abiotic fields on population-level behaviors. Moreover, this is one
of the first studies to use direct prey fields in place of environmental
proxies on a broad scale to examine the drivers of blue whale migration.

2. Methods

2.1. Environmental and prey data

Environmental and prey data are simulated using an implementa-
tion of the Regional Ocean Modeling System (ROMS) coupled with the
biogeochemical NEMURO model (Fiechter et al., 2016; Fiechter et al.,
2015; Kishi et al., 2007; Rose et al., 2015) for years 2000–2010. NE-
MURO describes nutrient, phytoplankton, and zooplankton dynamics in
each grid cell, which are advected and diffused in space with ROMS.
The ROMS-NEMURO output is generated prior to the IBM calculations
and provides environmental conditions including daily sea surface
temperature (SST) and relative krill density ρ at 3 km horizontal re-
solution over a domain ranging from 116 to 128∘W and 32–44∘N
(Fiechter et al., 2018). Krill relative density is a near-surface unitless
quantity and is a real number between 0 (low) and 1 (high). The ROMS-
NEMURO domain serves our primary focus and study area as blue
whales are known to exhibit extensive foraging in this region from May-
October and the model provides physical and prey fields at sufficiently
fine spatial and temporal resolution to inform behavior in the IBM.

Fig. 1 shows quarterly averages for SST and krill density over the
full computational domain for the year 2008; a year with ENSO neutral
conditions in the California Current region and relatively high krill
abundance in the coastal upwelling zone. In April-September, the up-
welling along the coast is evidenced by cooler nearshore waters and
locally enhanced krill concentrations.
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2.2. Model description

Spatially-explicit individual-based models (IBMs) used in popula-
tion dynamics seek to capture the motion of individuals in a hetero-
geneous landscape through a series of discrete updates. Here, the IBM is
formulated as a semi-Markov state switching model with N-states. Each
state �N is correlated with a behavior and characteristic state move-
ments are described by step-length and turning angle distributions.
Locations and states for all individuals are updated at each time step.
States are selected probabilistically with elements pj,k of an N × N state
transition matrix τ define the probability of transitioning from state j to
k. Ensembles are created by the simulation of many agents, allowing for
inference of population statistics and behaviors, while still retaining the
discreteness of individuals.

IBMs allow us to program behavior and see which aspects most
closely reproduce observed migration patterns and the probabilistic
updates naturally incorporate variations in each decision. To explore
how environmental and prey influences impact whale movements
throughout one seasonal migration period (May-December), we define
and analyze ensembles from the two IBMs described below.

2.2.1. Transit-Forage model
We used published movement parameters in our model to test the

hypotheses of what drives blue whale foraging migrations. Previous
studies of blue whale tagging data (Bailey et al., 2009) have identified
two distinct behavioral states, corresponding to transit and foraging. In
transit, whales tend to move in a straight line, whereas slower speeds
and higher turning angles are observed in foraging. As such, we em-
ployed a two-state model, with states �1 (transit) and �2 (forage) used
to evaluate how SST and prey availability drive whale movements,
behaviors, and distributions.

2.2.2. North-South model
Previous correlative models have shown higher success rates of

seasonal versus annual models when predicting blue whale migration
patterns (Abrahms et al., 2019b; Hazen et al., 2017). Blue whales likely
rely on different biological and physical processes during their north-
ward migration to feeding grounds versus southward migrations to
breeding grounds, with the transition likely triggered by bioenergetic or
breeding demands. Additionally, a higher percentage of transit is re-
ported during the southward migration with individuals only stopping
to forage if the prey conditions are sufficiently dense (Bailey et al.,

2009). Northward and southward states are therefore split for the mi-
gration study to account for the stricter foraging requirements while
returning to southern breeding grounds. Mechanisms for transition to
southward migrations are therefore studied with a four-state model;
states �1 and �2 describing transit and forage during northward mi-
gration and states �3 and �4 for southward migration.

We use a migration strategy based on the individual foraging rate
averaged over the previous 10 days, which is implemented in the
transition probabilities from �1 and �2 (north) to �3 (south). Low
foraging rates increase the probability of transitioning to southward
migration, and the time-average provided sufficient opportunity for
agents to travel between and seek out new krill patches. Again, we test
the effect of SST and prey density on this transition. Additional mi-
gration strategies including a krill satiation threshold in which south-
ward transitions are initiated when whales consume sufficient levels of
krill, and natal breeding homing were tested for transitioning to
southward migration and are described in the Supplement.

2.2.3. State transition functions and movement distributions
Behavioral states are selected probabilistically and are a function of

current environmental covariates X (SST), krill density ρ, and model
parameters θ. The probabilities encode how environmental and prey
conditions influence the state transitions. The 2 × 2 state transition
matrix for the transit-forage model is shown in Eq. (1) as an example,
with the 4 × 4 matrix for the north-south model given in the Supple-
ment
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Here, = = =−P s s X θ ρ( 2| {1, 2}; , , )t t t 1 is defined as the probability
of foraging and st is the behavioral state at time t. The probability of
foraging is a weighted sum of environmental and krill transition func-
tions and is given by

 = = = + = =− −P
z

w s s X θ w s s θ ρ1 [ ( 2| {1, 2}; , ) ( 2| {1, 2}; , )]t E t t K t t1 1 2 1

Fig. 1. Quarterly SST and near-surface krill density from simulated ROMS data for 2008.
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with the weights w1 and w2 controlling the relative importance of SST
and krill and = +z w w1 2 to normalize probabilities to 1. The en-
vironmental transition probability is the simple linear response function

 = = = + −−
−s s X θ α α X X( 2| {1, 2}; , ) logit [ ( *)]E t t 1

1
1 2

that selects for colder temperatures. Krill transition probabilities are set
by the logistic selection function

 = = = −−
−s s θ ρ β ρ ρ( 2| {1, 2}; , ) logit [ ( *)],K t t 1

1

where probability of foraging increases with krill density.
Model parameters are provided in Table 1. We assume future states

depend only on current conditions and are independent of the past and
current state, so that τ is constant on the columns and rows sum to 1. In
the model, behavioral states are updated every 6 h. Fig. 3 shows the
probability of foraging computed for the full domain using monthly SST
and krill inputs; figures of daily probabilities are provided in the sup-
plement.

Across both the transit-forage and north-south models, the forage
and transit states have the same movement distributions, regardless of
north- or southward migration. Step lengths are positive real numbers
in units of meters and follow gamma distributions with probability
density function (Bailey et al., 2009; Scales et al., 2016)
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where Γ(a) is the gamma function. Turning angles are sampled from a
von Mises distribution with probability density function given by

= − < <f x
πI κ

κ x μ x π( ) 1
2 ( )

exp( cos( )), 0 2 ,TA
0

where I0(κ) is the Bessel function of order 0. A 0∘ turning angle corre-
sponds to straight movement in all states except southward transit � ,3

where 0∘ is set to south. Parameters used in step length and turning
angle distributions for transit and forage states are given in Table 1 and
movement distributions are shown in Fig. 2. The gamma distribution
shape and scale parameters yield average step lengths of 22.2 ±
12.9 km (transit) and 6.3 ± 5.8 km (forage) for a 6 h time period,
consistent with (Bailey et al., 2009; Scales et al., 2016).

2.3. Model implementation

For its implementation in the IBM, the semi-Markov model form-
alism is combined with an area restricted search (ARS). The ARS adds
intelligence by allowing individuals to locally sense areas of high
foraging potential. The algorithm is as follows, and is further outlined

in Fig. 2. Let Yw, t be the geographic location of whale w on time step t.
Individual locations are initialized on a given day uniformly at random
within a pre-defined region of the domain. The probability of foraging
Pw, t is calculated for each location Yw, t and used to select the next
behavioral state +sw t, 1. An area-restricted search is conducted on the
perimeter of a box of radius R to find the location Yw with highest
probability of foraging. If such a location exists, the turning angle is
centered around the direction from Yw, t to Yw. Step lengths and turning
angles are sampled from the state distributions, and used to update the
locations to +Yw t, 1. Positions and states are updated at 6 h intervals
using daily ROMS output.

Ensembles of 2000 whales for years 2000 – 2010 were generated
using the transit-forage and north-south models. To understand the
independent roles of SST and krill in driving the observed movement
patterns of the northward migration in the transit forage-model, we
additionally generated model ensembles using only SST or krill as in-
puts. These one-input ensembles can be thought of from a modeling
perspective as probing the independent effects of each variable, or from
a biological perspective as populations with distinct strategies that base
their fine-scale decisions on only one of the two variables. We analyzed
the effects of these strategies on broad-scale migration patterns, sea-
sonal and interannual differences in prey consumption, and transitions
to southward migration. The same environmental and krill transition
functions were used in all cases, and turning a driver off or on is
equivalent to adjusting the weights in the state transition matrix.
Results are additionally measured against a correlated random walk
(CRW) with no environmental or prey preferences. The CRW has the
same behavioral states and movement distributions, with the prob-
ability of foraging fixed at 0.4, in alignment with published foraging
rates for May – November (Bailey et al., 2009). Krill densities and SST
are recorded in the CRW model at whale locations for comparison
purposes.

To measure and compare the foraging success between population
ensembles, we introduce a foraging potential metric Ω. The value of Ω
for each individual w provides a sum of the krill density encountered
while in a foraging state and is given by

∑=
=

=ρ Y sΩ ( ) ( ).w
t

N

w t s w t
1

, 2 ,w t,

Here, ρ(Yw, t) is the krill density at the location of whale w,
 = s( )s w t2 ,w t, is an indicator function that takes the value one if whale w is
foraging (in state 2) and zero otherwise, and the summation is over all
time steps t.

2.4. Modeling assumptions

We summarize the model assumptions that were made in the de-
velopment of these individual based models to study how daily to
monthly SST and prey variability contribute to seasonal whale move-
ments and foraging migrations.

• Model whales based their fine-scale decision only on SST and/or
krill availability. While other environmental factors may contribute
to the process, SST is often highly correlated with whale presence
(Gill et al., 2011; Hazen et al., 2017; Palacios et al., 2019) and is one
of the most accessible variables for use in models. The direct im-
portance of prey in constraining distributions and migrations of
marine megafauna has not yet been evaluated.

• Future behavioral states only depend on current prey and environ-
mental conditions and are independent of current and past states.
Model runs are initiated at the start of the migration season and
whales are not allowed to learn from prior migrations.

• Our model represents the ‘average whale.’ The age, sex, and life
history of individuals are not factored in the model since these
variables are unknown in the available tagging data and movement

Table 1
Model parameters used in state transition probabilities and movement dis-
tributions. Parameters are unitless unless indicated. Parameter values marked
with a superscript † are derived from distributions reported in
Bailey et al. (2009) and Scales et al. (2016).

Parameter Value

State Transition α1 −1
Probabilities α2 −0.2 (∘C)−1

X* 16 ∘C
β 5

States �1 and �2 ρ* 0.3
States �3 and �4 ρ* 0.6
Transit Movement a 2.96†
Distributions s 7,495.9† m

μ 0† radians
κ 10†

Forage Movement a 1.17†
Distributions s 5,376.6† m

μ π† radians
κ 3†
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parameters (Bailey et al., 2009).

• Individuals are not tracked upon leaving the ROMS domain and are
not permitted to re-enter the domain. Position updates that end on
land are resampled to obtain a location in the ocean.

• Individuals enter the southern border of the domain uniformly at
random between May 1, and June 1. Start locations are drawn
uniformly at random from the box bounded by latitudes
32.45–33.35∘N and longitudes 118.5–124.2∘W off the coast of
southern California.

• Upon entering the domain, all agents are in transit state �1 with the
turning angle 0∘ aligned with due north.

• In the north-south model, the transition probability from �1 and �2

to �4 is 0. That is, whales only transition from north transit-forage
states to the south transit state �3. Transition to state �3 was re-
stricted until day of year 150 to allow the agents to explore the
domain and find foraging grounds.

2.5. Parameter selection and sensitivity analysis

When possible, model parameters were determined from previously
published resources to reduce the number of free variables. The en-
vironmental transition probability function is parameterized to select
for colder temperatures associated with upwelling. The step length and
turning angle distributions for the transit and forage states are derived
from the speeds and turning angles of the transit and area restricted
search behavioral states in (Bailey et al., 2009) and scaled to a 6 h time
step. The 6-hour time steps were selected to best correspond with the

3 km spatial resolution of the ROMS data. The average step lengths
associated with a 6-hour interval allow the whales to transit and forage
within the local domain without stepping over and missing potential
foraging opportunities. Area restricted search is designed as a local
search algorithm, thus the search radius was set to match this average
step length. Thus, the free parameters and model variables are reduced
to β and ρ* used in the krill transition probability, the day of year in-
dividuals enter the domain (start date), and starting location.

A sensitivity analysis indicates that ensemble spatiotemporal dis-
tributions and population level transit-forage behaviors are robust to
reasonable changes in the free parameters. Results of the sensitivity
analysis and additional justification for parameter selection are pro-
vided in the Supplement. The start date and starting locations of in-
dividuals were identified as the most influential parameters on the
population’s northward migration and foraging success, whereas
changes to the parameters β and ρ* have minimal impact. The model
sensitivity to start date aligns with recent studies of blue whale call
patterns which reveal variability in the timing and success of the
northward migration (Szesciorka et al., 2020). To account for the in-
creased sensitivity these variables add, the start date is uniformly dis-
tributed from May 1, – June 1, and the starting location is selected
uniformly at random from a wide box in the southern part of the do-
main.

3. Results

We aggregated population ensembles for all years to analyze

Fig. 2. (a) Model algorithm in pictorial form. The acronym ARS stands for area restricted search. (b) Behavioral states for each model. Arrows indicate possible
transitions. (c) Step length and turning angle distributions for all transiting and foraging states. These distributions have been scaled from Bailey et al. (2009) to
account for the 6 h time step used in the IBM. A turning angle of 0∘ corresponds to straight in all behavioral states except �3 of the north-south model, where instead
0∘ is due south.
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broadscale patterns. Further, we considered specific years to highlight
transient and interannual trends.

3.1. Northward migration

Using only fine-scale decisions, the transit-forage model produced
realistic broad scale northward migration patterns, timings, and dis-
tributions. Fig. 4 shows the aggregated results for all years 2000–2010.
Specifically, the ensembles reach a northernmost mean latitude by early
October (Fig. 4a) and peak abundance of blue whales in the Monterey
Bay region (defined by latitudes 36.6-370N) between July and October
(Fig. 4b). These distributions align with previous reports on migration
characteristics, estimates based on satellite tagging data (Fig. 4a;
Abrahms et al., 2019a; Irvine et al., 2014), and surveys of shipboard
sightings (Croll et al., 2005; Fossette et al., 2017). In addition, the en-
sembles show a higher level of foraging during May - October, con-
sistent with empirical observations (Bailey et al., 2009; Irvine et al.,
2014), with a sharp decrease in foraging rates (Fig. 4c) as krill abun-
dance begins to decrease October in the domain, in concordance with
the end of upwelling.

The first panel in Fig. 3 displays July 2008 aggregates for the
probability of foraging and foraging locations from the transit-forage
model, and emphasizes that these two variables are not directly cor-
related. In the IBM foraging locations depend on the probabilities, but
also explicitly on the current location of each agent and the travel times
to productive habitats. In July, the majority of the population remains
in southern regions of high foraging potential and has yet to reach the
rich northern foraging grounds, despite the high probability of foraging
above latitude 40∘N.

3.2. Contributions of environment and prey on the northward migration

To understand the independent contributions of SST and krill to the
observed northward migrations we generate and analyze model en-
sembles that use only SST or krill as inputs. Strategies based only on
krill or SST lead to populations with distinct domain use patterns
(Figs. 3–5). First, the July 2008 foraging location aggregates (Fig. 3)

demonstrate that the influences of SST or krill drive the populations to
feed in spatially distinct regions. In our model, the temperature cues
lead to dispersed habitats with small foraging hotspots only localized at
the coast. The influence of krill promoted increased offshore habitats
and foraging hotspots.

Furthermore, when only SST is used as a driver, the proportion of
the whale population in the foraging state remains relatively constant
between 30–40% throughout the year, with the remaining individuals
in the transiting state (Fig. 4c). Longer step-lengths from the transit
distribution allow the SST-only population to explore the domain
quickly, resulting in a fast migration reaching the northernmost mean
latitudes earlier in the summer and overall a higher northernmost mean
latitude. In contrast, the krill-only strategy mimicked the full model in
the latitudinal distributions (Fig. 4a) and arrival of whales in Monterey
Bay (Fig. 4d), suggesting that the influence of krill is responsible for the
timing of the northward migration in the combined model.

Daily and seasonal foraging patterns are also remarkably more
distinct in prey-driven populations. Both models with krill have at least
a 3 times higher variance in daily foraging rates when compared to the
SST model. The full and krill-only models additionally show a transition
to lower foraging rates between day of year 275 - 300 (beginning-late
October) in concordance with the end of the upwelling season
(Bograd et al., 2009).

Higher foraging rates from krill inputs naturally correspond to a
higher foraging potential. Normalized distributions of Ω for each of the
three strategies are shown in Fig. 4d. The krill-only ensemble shows
higher average foraging potential than the SST-only and combined
populations. Thus, the influence of krill drives the foraging success of
the combined population. However, the SST-only model still had a
higher mean foraging than the CRW model, indicating that the influ-
ence of favorable SST drives individuals to forage in locations with
higher krill densities than they would find by random chance.

3.3. Interannual differences in prey consumption and foraging

The years 2003 and 2008 have lower and higher than average
modeled krill densities, respectively, and higher (2003) and lower

Fig. 3. Average probability of foraging used as IBM input (top row) and model-predicted locations whales foraged (bottom row) from the north-south model for July
2008 based on combined SST and krill, SST only, and krill only.
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(2008) than average SST (Fig. 5a, Supplementary Table 2). Results from
the full model show significant interannual differences in agreement
with the increased levels of krill from the ROMS data. 2008 has a 4%
average higher foraging rate averaged over all simulation days than
2003 (Fig. 5c), with up to 20% differences depending on the time of
year. Prior to day of year 260, the 2008 population shows an 8.8%
higher average foraging than 2003 with daily differences reaching as
high as 20%. After this date, 2003 temporarily has a higher foraging
rate before both populations reach equal foraging.

A comparison of the population ensembles for 2003 and 2008
provided understanding of how SST and prey factors contributed to the
observed interannual differences. Both SST and krill populations have a
3–4% higher average foraging rate for 2008 than in 2003. Thus, the
lower average SST in 2008 alters the population behavior and increases
the overall foraging, but the addition of krill again provides more de-
tailed temporal information. The SST population shows no significant
differences in the foraging rates before and after day of year 260,
whereas in the spring and summer months the 2008 krill population has
a 10.7% higher rate than 2003. Furthermore, the foraging rates for
2008 are lower than 2003 just after day of year 260 despite the higher
krill density in 2008.

Average foraging potential Ω is higher in 2008 across all strategies,
with krill driven populations showing a secondary peak at higher levels.
Independent of the yearly variances in prey density, the krill driven
populations exhibited the sharp transition to lower foraging rates in
October. Thus, our results suggest the influence of prey provides the
fine scale daily, seasonal, and interannual details observed in the full
model.

3.4. Implications on southward migration

The addition of the southward migration states results in a south-
ward shift in the latitudinal distributions for all strategies (Fig. 6a). All
cases show similar timing with the latitudes peaking around day 300,
however, the addition of krill influences transitions to southward mi-
grations in realistic ways. Specifically, all models show a large early
migration at days 150–200 as whales unsuccessful at finding and re-
maining within rich foraging grounds migrate south. However, models
that include krill continue to transition throughout October and No-
vember with a secondary peak around day 300 corresponding to the
seasonal reductions in population foraging rates that are observed in
the transit-forage model (Fig. 6b). Using only SST, the proportion of
whales foraging remains relatively constant and low through the spring
and fall (Figs. 4b - 5 c), which leads to time independent and early
transitions. Furthermore, the cumulative percentage of whales transi-
tioning into a southward migration plateaus around day 300 in the SST-
only model (Figure 6 c), whereas the krill and SST + krill models
display continuing transitions to southward migration later in the
season. With all strategies, not all whales transition to southward mi-
grating states as individuals may leave the study area prior to the start
of migration or remain in areas with high foraging potential.

4. Discussion

Understanding the bottom-up drivers of spatiotemporal distribu-
tions of highly migratory species is important for predicting changes in
future habitat use and for implementing effective dynamic conservation
policies. Here, we introduced an IBM which reproduced realistic

Fig. 4. Comparison between types of model output aggregated across years. (a) Mean latitudes, (b) Normalized whale abundance in the Monterey Bay region for each
model. Shaded region between vertical dashed lines represents months with historically the highest number of blue whale sightings (Croll et al., 2005; Fossette et al.,
2017), (c) proportion of individuals in foraging state, (d) Normalized distribution of foraging potential Ω with mean indicated by the corresponding vertical lines.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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foraging and migratory behaviors at both individual and population
levels, suggesting that fine-scale individual decisions lead to emergent
properties of the population (Mueller and Fagan, 2008). Furthermore,
we used model populations driven by only SST or krill to help uncover
the direct impact of each variable on whale behavior and migrations.
Our findings indicate that abiotic (SST) and biotic (krill abundance)
factors both play key roles in individual movement decisions during
round-trip blue whale migrations.

Abiotic factors such as SST are commonly used as proxies for prey in
blue whale models (Abrahms et al., 2019a; Becker et al., 2019; Pirotta
et al., 2019; Pirotta et al., 2018). While we found that SST indeed leads
whales to forage in areas with higher prey availability at broad spatial
scales compared to a simple CRW, important spatial and temporal
patterns are missed by using SST without including krill contributions
explicitly (Figs. 4–6). Notably, the proportion of whales foraging re-
mained nearly constant throughout May - December, thus missing im-
portant seasonal fluctuations in foraging behavior (Bailey et al., 2009).
Additionally, driving populations only with SST led to more northerly
average latitudes (Fig. 4a), inaccurate arrival times to Monterey Bay
(Fig. 4d), and could not realistically reproduce the seasonal southward
return migration (Fig. 6).

In contrast, populations influenced only by krill retained realistic
seasonal behaviors, such as increased foraging during the upwelling
season and denser krill years, as well as an appropriate timing of
southward migrations (Abrahms et al., 2019a; Bailey et al., 2009).
Furthermore, the influence of krill resulted in increased offshore habi-
tats and foraging hotspots. However, these ensembles expressed un-
realistically high levels of seasonal foraging (Figs. 4-5) when compared
to published estimates of monthly foraging behavior (Bailey et al.,
2009).

When combined, krill acted to inform biologically feasible seasonal
and yearly variations in foraging behavior, and SST reduced excessively

high foraging rates, plausibly by accounting for the impact of un-
favorable environmental conditions on movement and foraging deci-
sions. While the results presented here represent statistics from large
population ensembles run with a fixed set of parameters and using si-
mulated SST and prey fields, we found general population distributions
and migratory behaviors were robust to reasonable changes in model
parameters (Supplement).

The growing use of IBMs has opened new avenues to test mechan-
istic questions of animal movement and make predictions for future
scenarios (Bauer and Klaassen, 2013; DeAngelis and Mooij, 2005;
Stillman et al., 2014; Tang and Bennett, 2010). Examples range from
terrestrial to marine communities and include the role of memory in
zebra (Bracis and Mueller, 2017) and elk (Bennett and Tang, 2006)
migrations, environmental and bioenergetics factors influencing deci-
sion processes during bird migrations (Duriez et al., 2009), con-
sequences of conservation and harvesting practices on fisheries (Ayllón
et al., 2018; Jørgensen et al., 2008; O’Callaghan and Gordon, 2008),
and how generic habitat characteristics can lead to migratory behavior
(Shaw and Couzin, 2013). Our results here contribute to the wealth of
spatiotemporal and mechanisitic information that can be learned from
IBM ensembles.

As Fig. 3 shows, a high probability of foraging does not directly
correspond to foraging whales. Correlative species distribution models
provide information on available habitat yet have little consideration of
behavioral factors that could limit use. In other words, a species’ rea-
lized niche is not necessarily its fundamental niche. These models can
result in high predictions in areas that are unavailable to migratory
predators and falsely link animal presence with preferred habitats
(Fig. 3; Garshelis, 2000; Railsback et al., 2003). For example,
Hazen et al. (2017), Abrahms et al. (2019b) predict high habitat like-
lihood in the northern part of the domain, but these ranges are less
likely to be accessed by migrating whales due to movement limitations.

Fig. 5. Transit-Forage model results for low (2003) versus high (2008) krill years. (a) Comparison histogram of seasonal krill values for years 2003 and 2008. (b)
Histograms of foraging potentials Ω for populations from each year. (c) Proportion of whales foraging for each mode and year. Grey lines show 2008-2003 difference.
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The dynamic state model approaches in (Pirotta et al., 2019; Pirotta
et al., 2018) seek to answer mechanistic factors driving the migration
strategies for lactating female blue whales. Locations and energetic
needs of the individuals are included, but movement is limited to
stepping along a one-dimensional line of 100km boxes adjacent to the
coast. The presented IBM overcomes these limitations by explicitly
linking fully two-dimensional discrete movement processes and beha-
vioral states to the available environmental and prey conditions, which
revealed broad-scale migration patterns and mechanistic information
about habitat use and foraging behaviors. Our results reveal the relative
roles of the physical environment and prey availability in the move-
ment decisions of a migratory marine predator and shed light on en-
vironmental processes influencing foraging and migratory behavior on
daily to seasonal scales. Such information can help relate future
changes in biotic and abiotic environmental conditions to a species’
anticipated behavioral responses.

Migratory species continue to face an expanding number of threats
from changing environmental conditions and interactions with humans
(Horns and Şekercioğlu, 2018; Maxwell et al., 2013; Wilcove and
Wikelski, 2008). Our findings also have important ecological and con-
servation implications, as ocean temperatures are warming globally and
climate change is expected to redistribute species richness in lower
trophic levels (Woodworth-Jefcoats et al., 2016). Previous work has
predicted how ocean conditions may influence the distributions of top
predators over the next century (Hazen et al., 2013). However, changes
in habitat quality may have disproportionate effects depending on the
distance from normal migration routes. For example, increased habitat
quality far from shore may not be discovered or may not be en-
ergetically feasible to exploit. Here, we show how year-to-year differ-
ences in conditions are clearly captured in the model ensembles (Fig. 5).

By using climate change projections as input, the model could generate
more realistic predictions for the responses of blue whales to future
scenarios. Increased water stratification from ocean warming is likely to
affect the vertical distribution of krill, and krill populations may shift
poleward or decline in response to predicted changes in coastal up-
welling systems (Di Lorenzo et al., 2005; Palacios et al., 2004;
Roemmich and McGowan, 1995; Rykaczewski et al., 2015; Sydeman
et al., 2014). Given we found SST and krill were both important in
determining multiple aspects of blue whale space use and foraging
behavior, concurrent climate change impacts to both water tempera-
tures and krill may influence blue whale distributions and prey con-
sumption in synergistic ways. Our work highlights the value of in-
cluding multiple forage-based drivers of animal movements and
distributions to not only elucidate the mechanisms underlying mi-
gratory behavior, but also to help quantify the effects of anthropogenic
risks on a threatened and highly migratory species.

Finally, the models presented here provide insight into the dynamic
behavior of a highly migratory marine species, thereby laying the
foundation to explore other aspects of the ecology and distributions of
marine megafauna. Additionally, an individual-based model framework
allows for testing the roles of other variables or processes on emergent
migratory behavior. For example, animal culture and social interactions
have been shown to influence the migratory capacity of other species,
including ungulates (Jesmer et al., 2018) and birds (Mueller et al.,
2013). Blue whales have been shown to communicate over large dis-
tances (roughly 500 - 1,000 km) (Watkins et al., 2000), but the impacts
of such communication on migrations have not been explored. The role
of sociality in whale migrations could readily be tested in our modeling
framework by allowing agents in sufficiently dense krill patches to
signal their location and attract others. Optimal group sizes could also

Fig. 6. North-South model with data aggregated from years 2000 - 2010. (a) Latitudinal distributions of each method with number of whales still in the domain given
by the red curve. (b) Density plot showing day of the year southward migration was initiated. (c) Cumulative percentage of whales that have begun southward
migration (transitioned into state �3). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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be evaluated by modeling trade-offs associated with density-dependent
foraging opportunities (Markham et al., 2015). Finally, memory effects
are believed to play a role in migratory behaviors (Abrahms et al.,
2019a), and their role could be tested through the use of climatological
inputs. Thus, the flexibility of a spatially-explicit individual-based
movement model such as that presented here provides the opportunity
to test a wide range of hypotheses in animal behavioral ecology.
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