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Spatial distributions of marine fauna are determined by complex interactions between
environmental conditions and animal behaviors. As climate change leads to warmer,
more acidic, and less oxygenated oceans, species are shifting away from their historical
distribution ranges, and these trends are expected to continue into the future. Correlative
Species Distribution Models (SDMs) can be used to project future habitat extent
for marine species, with many different statistical methods available. However, it is
vital to assess how different statistical methods behave under novel environmental
conditions before using these models for management advice, and to consider whether
future projections based on these techniques are biologically reasonable. In this
study, we built SDMs for adults and larvae of two ecologically important pelagic
fishes in the California Current System (CCS): Pacific sardine (Sardinops sagax) and
northern anchovy (Engraulis mordax). We used five different SDM methods, ranging
from simple [thermal niche model (TNM)] to complex (artificial neural networks). Our
results show that some SDMs trained on data collected between 2003 and 2013
lost substantial predictive skill when applied to observations from more recent years,
when ocean temperatures associated with a marine heatwave were outside the range
of historical measurements. This decrease in skill was particularly apparent for adult
sardine, which showed non-stationary relationships between catch locations and sea
surface temperature (SST) through time. While sardine adults and larvae shifted their
distributions markedly during the marine heatwave, anchovy largely maintained their
historical spatiotemporal distributions. Our results suggest that correlative relationships
between species and their environment can become unreliable during anomalous
conditions. Understanding the underlying physiology of marine species is therefore
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essential for the construction of SDMs that are robust to rapidly changing environments.
Developing distribution models that offer skillful predictions into the future for species
such as sardine and anchovy, which are migratory and include separate sub-stocks,
may be particularly challenging.

Keywords: Species Distribution Models, Pacific sardine, northern anchovy, California Current, marine heatwaves

INTRODUCTION

Climate change is leading to unprecedented conditions in marine
ecosystems around the world, forcing ocean biota to adapt to new
environmental states (Lima and Wethey, 2012; Poloczanska et al.,
2013). Mobile marine animals may respond to physiologically
stressful or otherwise unfavorable environments by moving away
from impacted areas. These changes in spatial distributions can
present challenges for the effective management of ecologically
and economically important species and habitats (Mills et al.,
2013; Cheung et al., 2015; Kleisner et al., 2017; Karp et al., 2019).
The development of most stock assessment models, marine
protected areas, and other resource management measures has
traditionally assumed relatively constant species distributions
through time (Link et al., 2011; Punt et al., 2013). Resilient
management strategies for the future will thus need to be flexible
enough to adapt to shifting species distributions, and changing
spatial productivity regimes (Johnson and Welch, 2009).

Multivariate correlative Species Distribution Models (SDMs)
are increasingly being used to anticipate these challenges by
projecting future distributions of marine species. These types
of model are popular due to their flexibility, and ability to
represent complex relationships between a species and its ocean
habitat (Guisan and Zimmermann, 2000; Elith and Leathwick,
2009). However, SDM projections can be misleading if models do
not adequately capture the mechanistic drivers which underpin
species responses to their environment (Buckley et al., 2010;
Silber et al., 2017; Yates et al., 2018). These models can
also behave in unexpected ways when confronted with novel
environmental conditions, or when required to extrapolate in
time or space (Hannemann et al., 2015; Norberg et al., 2019).
The responses of different classes of SDM to novel conditions
can also depend on the model structure, potentially introducing
another significant source of uncertainty into projections of
future species distributions.

The choice of covariates for use in SDMs can also
be influential. The inclusion of environmentally invariant
spatiotemporal covariates (e.g., longitude, latitude, month, day of
the year) often improves SDM performance against present-day
observations, because these covariates can represent important
but unmeasured (or unknown) spatiotemporal processes (Brodie
et al., 2020). However, as climate change increasingly leads
to directional shifts in ocean conditions, historically relevant
spatiotemporal predictors of species distributions may lose
their skill. For species that move primarily in response to
local, near-real-time environmental conditions, SDMs including
spatiotemporal covariates are less likely to remain accurate into
the future. In contrast, SDMs with spatiotemporal covariates

may continue to be skillful for some future period of time
for species which move depending on genetically determined
migration behaviors, or in response to fixed geographical cues,
such as coastal topography (Bauer et al., 2011; Winkler et al.,
2014). These animals may continue to occupy historical habitats,
even as the physiological suitability of these locations deteriorates
(e.g., Crozier et al., 2008). The importance of understanding the
physiology, predator-prey interactions, and movement ecology of
species before attempting to project their future distributions is
thus clearly important.

A combination of anthropogenic climate change overlaid
on higher-frequency natural variability, such as the El Niño –
Southern Oscillation, has led to unprecedented warm events in
marine ecosystems in recent years (Holbrook et al., 2019; Jacox,
2019; Smale et al., 2019). These extreme events have been referred
to as marine heatwaves, with a severity classification based on
departures from climatological sea surface temperature (SST)
(Hobday et al., 2018). The California Current System (CCS)
experienced a severe (category 3) marine heatwave from 2014 to
2016 (Figure 1), which originated as an offshore anomaly known
as “the Blob” (Bond et al., 2015). This heatwave evolved into
a coastwide warming pattern (Di Lorenzo and Mantua, 2016),
further fueled by a strong El Niño in 2015–2016 (Jacox et al.,
2016). SSTs were up to 6◦C warmer than usual, and primary
productivity was anomalously low across parts of the continental
shelf and offshore regions (Gentemann et al., 2017; Kahru et al.,
2018). Many marine species responded strongly to the heatwave,
showing highly anomalous abundances (e.g., Becker et al., 2018;
Brodeur et al., 2019; Duguid et al., 2019), and distribution
patterns (Cavole et al., 2016; Sakuma et al., 2016) compared to
historical observations.

With novel environmental conditions, such as marine
heatwaves, becoming increasingly common, there is a critical
need to test if our predictions of species responses to these
conditions are realistic (Guisan et al., 2013). The CCS marine
heatwave can thus provide a useful out-of-sample robustness
test for SDMs trained on prior years (Becker et al., 2018).
If SDMs can reproduce the anomalous species distributions
observed in 2014–2016, it instills confidence in their usefulness as
tools for projecting species distributions decades into the future.
Conversely, a strong loss of SDM skill during the heatwave years
may suggest that the underlying mechanisms driving species
distributions in the CCS have not been adequately captured.

Pacific sardine (Sardinops sagax: sardine hereafter) and
northern anchovy (Engraulis mordax: anchovy hereafter) are
ecologically important forage fish in the CCS, transferring energy
from plankton to upper trophic levels (Koehn et al., 2016). Their
dynamics are characterized by boom and bust cycles, even in the
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FIGURE 1 | Sea surface temperature (SST) anomalies against a 1980–2018 mean from the CCS ROMS by quarter (January–March, April–June, etc.) for the
Experiment 1 SDM training/testing and validation time periods. Anomalies are averaged temporally and mapped spatially at 1◦ resolution (top) and averaged
spatially across the whole model domain and plotted temporally (bottom).
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absence of industrial fishing (Baumgartner, 1992). In the past
10 years, sardine biomass has declined to very low levels, while
anchovy abundance has increased strongly since 2017 (Lindegren
et al., 2013; Gallo et al., 2019; Thompson et al., 2019; Zwolinski
et al., 2019). Anchovy are associated with cool, upwelled waters in
shallower coastal environments, and are generally non-migratory
(Checkley et al., 2009). The central anchovy subpopulation ranges
from Baja California to San Francisco, and spawns off southern
and central California, while the northern subpopulation ranges
from San Francisco to British Columbia, and spawns near
the Columbia River plume (Emmett et al., 2005; Litz et al.,
2008; Checkley et al., 2009; Duguid et al., 2019). Sardine reside
in warmer, more oligotrophic waters between the California
Current and the coastal upwelling region (Checkley et al.,
2009). Two of the three sardine subpopulations undergo annual
northward feeding migrations, the extent of which may depend
on oceanographic conditions, population size, and age structure
(Smith, 2005; Zwolinski et al., 2011; McDaniel et al., 2016). The
southern subpopulation extends from southern Baja California to
southern California, and spawns in summer and fall off southern
Baja California. The northern subpopulation, and extends from
northern Baja California to British Columbia (Valencia-Gasti
et al., 2018), spawning off central and southern California in
spring, and in spring-summer off Oregon and Washington in
some years (Zwolinski et al., 2011; Auth et al., 2018).

Ongoing research surveys provide extensive distribution
information for sardine and anchovy across life stages in the
CCS, making them useful case study species. In this study, we
thus assessed the ability of five different types of SDM to predict
distributions of adults and larvae of sardine and anchovy in the
region. Our chosen SDMs spanned a range of complexity from
simple, single-variable thermal niche models (TNMs) to more
complex machine learning models. We assessed the predictive
skill for each SDM across two separate experiments. The first used
data collected from 2003 to 2013 to train the SDMs, and then
externally validated them against observations from 2014 to 2018,
a time period including the 2014–2016 marine heatwave. The
second experiment allowed the SDMs to use observations from
the marine heatwave years for model training, and validated them
against data from withheld years with near-average temperature
conditions (2003–2007). We discuss our results in light of current
knowledge on the ecology of sardine and anchovy in the CCS,
and offer some potential explanations for differences in skill
observed between the two experiments and across each life stage
of each species.

MATERIALS AND METHODS

Biological Data Sources
Catch records for adult sardine and anchovy were obtained
from trawl surveys conducted by the NOAA Southwest Fisheries
Science Center (SWFSC). There were data from 1,777 hauls
available for use, from 29 cruises conducted between July 2003
and September 2018. Sampling effort was primarily concentrated
in spring (April: 657 hauls) and summer (July–August: 737
hauls), but some data were also available from other months

between March and October. The trawl net was towed near the
surface at night at a target speed of 3.5–4.0 knots. The net was
fitted with an 8 mm mesh liner in the codend (more details
are contained in Zwolinski and Demer, 2012; Zwolinski et al.,
2012 and Weber et al., 2018). Sampling was concentrated on the
continental shelf and slope.

Larval occurrence records for California waters were
primarily sourced from the California Cooperative Oceanic
Fisheries Investigations (CalCOFI) surveys. Collections under
this program began in 1949, and CalCOFI cruises have occupied
a standard grid of 66 stations off southern California since 1985.
We used catches from standard oblique 0.71 m bongo net tows,
which are fitted with 505 mm mesh and towed to 210 m depth
(Kramer et al., 1972; Moser et al., 2001; Asch, 2015). Larval
occurrence records for the northern California Current were
sourced from various sampling programs conducted between
1998 and 2018 by the NOAA Northwest Fisheries Science
Center (NWFSC) along the central Oregon coast. These catches
derived from 1-m ring and 0.6–0.7 m bongo net tows fitted
with 0.200–0.333 mm mesh towed to 20–100 m depth (Auth
et al., 2015, 2018; Thompson et al., 2019). Larval data from the
entire Oregon and southern Washington coasts were available
from yearly (since 2013) NWFSC Prerecruit surveys using a
0.7 m bongo net with 0.333 mm mesh (Brodeur et al., 2019;
Thompson et al., 2019).

Environmental Variables
Environmental predictors for the SDMs were sourced from a data
assimilative CCS configuration of the Regional Ocean Modeling
System (ROMS), with 42 terrain-following vertical levels. The
ROMS domain covered from 30 to 48◦N, inshore of 134◦W at
0.1◦ horizontal resolution1 (Veneziani et al., 2009; Neveu et al.,
2016). The suite of predictors was the same as used by previous
distribution modeling studies for marine vertebrates in the CCS
(Scales et al., 2017; Becker et al., 2018; Brodie et al., 2018; Muhling
et al., 2019; Smith et al., 2020), and is shown in Table 1. We
included SST due to the known importance of temperature to
physiological processes and habitat delineation in our species
(Checkley et al., 2000; Zwolinski et al., 2011; Weber et al., 2018).
Mesoscale oceanographic activity has been shown to delineate
favorable spawning areas for small pelagic fishes (Asch and
Checkley, 2013), and was captured through sea surface height and
eddy kinetic energy. We also included predictors of current flow
and wind stress (northward and eastward wind stress, current
velocities, wind stress curl), as these are important in shaping
retention characteristics and drivers of primary productivity in
the region (Jacox et al., 2018). As Brodie et al. (2018) showed the
importance of indicators of subsurface water column structure
(such as isothermal layer depth and bulk buoyancy frequency)
in predicting the distribution of large pelagic fishes and sharks
in the CCS, we also included these variables. Isothermal layer
depth captures the thickness of the well-mixed surface layer,
while bulk buoyancy frequency indicates the stability of the
upper water column. The spatial standard deviation of both SST
and sea surface height at 0.7◦ resolution were also included as

1http://oceanmodeling.ucsc.edu/ccsnrt version 2016a
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TABLE 1 | Predictors used to build SDMs, and SDM configurations which included each variable.

Variable Source Spatial resolution Temporal resolution SDM Config.

Bulk buoyancy frequency ROMS 0.1 Daily env, all

Wind stress curl ROMS 0.5 Daily env, all

Isothermal layer depth ROMS 0.1 Daily env, all

Eddy kinetic energy (log) ROMS 0.1 Daily env, all

Sea surface height ROMS 0.1 Daily env, all

Sea surface height s.d. ROMS 0.1 Daily env, all

Sea surface temperature ROMS 0.1 Daily env, all

Sea surface temperature s.d. ROMS 0.1 Daily env, all

Surface eastward current velocity ROMS 0.1 Daily env, all

Surface northward current velocity ROMS 0.1 Daily env, all

Surface eastward wind stress ROMS 0.1 Daily env, all

Surface northward wind stress ROMS 0.1 Daily env, all

Surface chlorophyll (4th root) ESA reanalysis 0.04167 8 day env, all

Moon phase Date Non-spatial Daily env, all

Stock biomass Stock assessment or larval survey Non-spatial Annual env, all

Latitude Survey Native Daily geo, all

Longitude Survey Native Daily geo, all

Month Survey Native Monthly geo, all

“s.d.” denotes standard deviation. Note that wind stress curl was extracted at 0.5 resolution, to account for discrepancies in wind forcing datasets used across years
(see Muhling et al., 2019).

predictors, to highlight areas of high variability such as frontal
zones (Hazen et al., 2018). More information on the calculation
of these parameters is available in Brodie et al. (2018) and
Muhling et al. (2019). Although surface salinity is available from
the ROMS, we chose not to include it as a predictor as it was
inconsistent through time, across the two ROMS experiments
(1980–2010 and 2011 – present: see Brodie et al., 2018). Values
of each ROMS predictor were extracted at native 0.1◦ spatial
resolution, for the date and location of biological sampling. As
the CCS ROMS is physics-only (no biogeochemistry), we used
satellite surface chlorophyll to approximate primary productivity.
These data were obtained from chlorophyll re-analyses developed
through the Ocean-Colour Climate Change Initiative (OC-
CCI) using multiple ocean color sensors (Sathyendranath et al.,
2019). Chlorophyll was extracted at 0.25◦ spatial resolution, and
from 8-day composites overlapping biological sampling dates, to
minimize the number of observations lost to cloud cover. Where
no 8-day chlorophyll observations were available for a sampling
station, we used monthly chlorophyll instead, as the correlation
between 8-day and monthly chlorophyll was high (r > 0.8). This
impacted <5% of the biological observations. Eddy kinetic energy
and surface chlorophyll were both strongly right-skewed, and so
were loge and 4th root transformed, respectively, before inclusion
in the SDMs. None of the environmental predictors were linearly
correlated with each other at r > 0.6 or r < −0.6, and so all were
included in the SDMs.

Following Weber and McClatchie (2010) and Muhling et al.
(2019) we included annual biomass indicators as additional
predictors for both species, to account for potentially different
rates of occupation of environmentally suitable habitat at
different stock sizes (Supplementary Figure S1). Previous studies
have shown that actual occupied habitat is more spatiotemporally
restricted than potential habitat for many fish species, particularly
when stock biomass is low (Planque et al., 2007; Reiss et al., 2008).

For sardine, we used annual standing stock biomass estimated
from sardine stock assessments (Hill et al., 2014, 2018). For
anchovy, we used 3-year running mean larval abundances from
CalCOFI surveys to index anchovy stock biomass (following
Zwolinski and Demer, 2012), as there is no current stock
assessment for this species.

Species Distribution Models
All SDMs in this study predicted the probability of occurrence
(presence or absence) of each species and life stage. The available
biological data from both trawl and larval surveys were split
into three sections for use in SDM training, testing, and external
validation. Partitioning of observations among these three groups
varied across two set experiments, described below.

In Experiment 1, SDMs were trained using a randomly
selected 50% of all available observations collected between
2003 and 2013 (training dataset). Optimal SDM configurations
were determined based on skill against the other 50% of data
from these years (testing dataset). Model skill was quantified
using the Area Under the Receiver Operating Characteristic
(ROC) curve: (AUC). The AUC metric measures the skill of
a classification model. The ROC curve plots the true positive
rate against the false positive rate at different classification
thresholds, and the area under this curve is used as a measure
of model performance. An AUC of 1 indicates a perfect model,
where all absences are correctly predicted as absences, and all
presences are correctly predicted as presences, while a value of
0.5 indicates that the model’s skill is no better than random.
SDMs built using the optimal configuration were then scored
against data from years 2014 to 2018 (validation dataset). Results
reported for each SDM for each species/life stage thus include
(1) a “test” skill, against data not used to build the model
but within the same set of years, and (2) a “validation” skill,
against data not used to build the model and from a different
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set of years with novel environmental conditions (Figure 1).
To estimate the uncertainty introduced from the random 50%
split of 2003–2013 data into training and testing datasets, this
split was repeated 10 times (setting the seed each time to
allow reproducibility), with optimal SDM configurations re-
determined, and a separate set of SDMs saved for each iteration.
Mean SDM skill was then assessed across results from all 10
training/testing splits.

Our Experiment 1 training data for the SDMs were restricted
to the years 2003–2013, to align with data availability for the trawl
surveys. However, larval survey data extend much further back in
time. We thus tested two modifications to Experiment 1 for larval
sardine and larval anchovy SDMs: the first extended training and
testing data back to September 1997, to align with the start of the
satellite chlorophyll record. The second modification extended
training and testing data back to 1980, to align with the start of
the ROMS reanalysis, with chlorophyll dropped as a predictor.
Skill against the withheld validation dataset from 2014 to 2018
was then re-tested in the same manner as for the larval SDMs
trained using 2003–2013 data.

In Experiment 2, we aimed to assess whether changes
in SDM skill between the testing and validation datasets
observed in Experiment 1 depended primarily on the novel
environmental conditions present during 2014–2018, or on the
lack of temporal overlap between the training/testing data and the
validation data. The first instance may suggest non-stationarity
in relationships between species and their environment during
extreme environmental events, or an inability of the SDMs to
skillfully extrapolate to novel conditions. The second instance
may suggest that the training and testing procedures outlined for
Experiment 1 were generally insufficient to prevent overfitting of
the SDMs. We thus repeated the SDM training procedure from
Experiment 1 but used different splitting criteria. Here, we used
50% of the data from 2008 to 2018 as the training data, and the
other 50% as the testing data. Years 2003–2007 were withheld to
be used as validation data. In this experiment, the validation data
were thus separated from the training/testing data temporally but
were not particularly novel environmentally (Figure 1).

As strongly uneven class membership can bias classification
models (Kuhn and Johnson, 2013), we used upsampling and
downsampling in the caret package (Kuhn et al., 2019) on the
training data for both experiments. Downsampling randomly
samples the data so that the two classes (positive and negative)
end up with the same frequency as the minority class.
Upsampling samples the data with replacement to make the
two class distributions equal. We upsampled the trawl data, as
downsampling resulted in too few observations remaining for
model training, but downsampled the much larger larval fish
dataset to keep computation times feasible. The most unbalanced
training dataset was for adult anchovy in the trawl dataset
for Experiment 1 (6.18% positive stations), while the least
unbalanced was for adult sardine in the trawl dataset, also for
Experiment 1 (33.81% positive stations).

Within each experiment, we tested three subsets of predictors
(Table 1 and Figure 2). One set of SDMs was built using
all environmental variables plus biomass indicators, longitude,
latitude, and month. The next set was built using only

environmental predictors and biomass indicators. The last set
was built using only longitude, latitude, and month. These
three configurations are referred to as “all,” “env,” and “geo,”
respectively, throughout the text.

Five different modeling methods were used to build SDMs
for each species/life stage: three machine-learning methods and
two forms of Generalized Additive Models (GAMs). These were
chosen to represent a range of possible approaches to building
SDMs for ecology, and all are well represented in the ecological
literature (e.g., Özesmi et al., 2006; Olden et al., 2008; Elith, 2019;
Brodie et al., 2020). All SDMs were built in R 3.6.1 (R Core Team,
2019) and are described in more detail below.

Boosted Regression Trees
Boosted Regression Trees (BRTs) are tree-based machine learning
models, which are highly flexible and include interactions among
predictors implicitly (Elith et al., 2008). BRTs for this study
were built using Bernoulli distributions in the dismo and gbm
packages (Hijmans et al., 2017; Greenwell et al., 2019). Different
combinations of tree complexity, learning rate, and number of
trees were tested using the caret package. Tree complexity was
allowed to vary between 2 and 5 (with a step of 1), and the number
of trees between 1200 and 2400 (step of 40). The best learning rate
depends on the tree complexity, number of trees, and number of
observations in the training data. We calculated a learning rate
coefficient (lr.coeff) based on the number of observations as:

lr.coeff = 1.7e− 06 × n − 1.91e− 04 (1)

where n is the number of observations in the training data. We
then allowed the learning rate for BRT training to vary between
4 and 8 times the lr.coeff. We found that this linear equation,
determined iteratively, gave a useful range of learning rates to
test. Once the “train” function in caret had selected the optimal
values for tree complexity, learning rate, and number of trees,
5 BRTs were built using the same training data, to capture the
stochasticity in the model building process (Figure 2).

Generalized Additive Models
Generalized Additive Models are semi-parametric regression
models which can account for non-linear relationships between
covariates and dependent variables using smoothing functions.
We built our GAMs in the mgcv package (Wood, 2017). The only
parameter tuned for the GAMs was the number of knots (k),
which was allowed to vary between 3 and 7, and kept the same
for all environmental variables. Although higher values of k can
result in slightly more skillful models, this approach can also lead
to biologically unreasonable relationships between predictors and
dependent variables. Thin plate regression splines were used for
all environmental variables, except month, which used a cyclic
cubic regression spline. Latitude and longitude were included
as a smoothed interaction term, and k was set to the square of
the value used for single predictors [i.e., s(lon, lat, k = k × k)].
This approach allowed the GAMs to realistically capture the
2-dimensional spatial structure of the observations (e.g., Zuur,
2012), without overfitting unreasonably in space. The value of k
which produced the best AUC on the testing data was selected
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FIGURE 2 | Conceptual diagram of SDM ensembles used for each of the two modeling experiments. “GAM” denotes Generalized Additive Models, “BRT” Boosted
Regression Trees, “MLP” Multilayer Perceptrons, “RFO” Random Forests, and “TNM” Thermal Niche Models. Note that these ensembles are replicated 10 times for
different random splits of the training/testing data.

as optimal. Unlike the machine learning SDMs, multiple GAMs
built on the same training data will be identical, and so only one
GAM was built for each subset of the training data (Figure 2).

Multilayer Perceptron Artificial Neural Networks
Multilayer Perceptrons (MLPs) are a type of Artificial Neural
Network machine learning model (Özesmi et al., 2006). We built
our MLPs in the neuralnet package (Fritsch et al., 2019) using
the resilient backpropagation with weight backtracking algorithm
and a logistic activation function. MLPs were optimized by
varying the number of neurons in the single hidden layer between
3 and 10. A maximum possible value of 10 was chosen as although
models with >10 neurons sometimes had slightly higher skill
against the testing data, they often did not converge, and required
much longer computation times to build. Similarly to the BRTs,
once an optimal number of neurons was chosen, five MLPs with
this configuration were built for each set of the training data.

Random Forests
Random Forest models (RFOs) are also tree-based machine-
learning models, but in contrast to BRTs, they use “bagging”
(bootstrap aggregating) instead of sequential boosting to create
model ensembles (Elith, 2019). We built our RFOs in the
randomForest package (Liaw and Wiener, 2002), and optimized
the models by varying the number of variables available for
splitting at each tree node (“mtry”). This parameter was allowed
to vary between a minimum of 2 and a maximum of the number

of total predictors. Similarly to the BRTs and MLPs, once the best
value of mtry was selected, five RFOs were built for each set of
the training data.

Thermal Niche Model
Machine learning SDMs are sometimes criticized for presenting
a “black box,” or overly complex approach to distribution
modeling (Özesmi et al., 2006; Olden et al., 2008). To examine
this perspective for our region and species of interest, we also
included a simple TNM in our suite of SDMs. The TNMs were
GAMs including only SST as a predictor (and also latitude,
longitude, and month for the “all” configuration). The number
of knots (k) for SST was fixed at 3, to allow only simple
parabolic relationships. Consistent with the approach to building
the multivariate GAMs described above, latitude and longitude
were included as a smoothed interaction term (except in the “env”
configuration), with k set at the same optimal value determined
for the full GAM. As with the full GAM, only one TNM was built
for each subset of the training data.

RESULTS

Experiment 1: Novel Conditions
Species Distribution Model skill for years 2003–2013 was
fair to good (AUCs > 0.7) for all four species/life stage
combinations (Figure 3). Skill varied between different covariate
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configurations, with those containing spatiotemporal predictors
(“all” and “geo”) generally outperforming environment-
only SDMs (“env”). The exception was adult sardine, where
distributions during this time period were generally best
predicted using all available environmental and spatiotemporal
predictors (“all” configuration), with the spatiotemporal-only
SDMs (“geo”) the least skillful and the environment-only
SDMs (“env”) showing intermediate skill. In contrast, larval
sardine distributions during years 2003–2013 were near equally
well predicted by either the “all” or “geo” SDMs, with the
“env” SDMs substantially weaker. None of the three SDM
configurations consistently outperformed the others for adult
anchovy during the SDM training period, although the “env”
TNM was particularly weak. This was also the case for sardine
larvae and anchovy larvae, suggesting that simple univariate
relationships with SST (i.e., the TNM) could not skillfully predict
distributions of these species in 2003–2013. Larval anchovy
distributions were best predicted by the “all” configuration, but
most SDMs built using all three configurations showed good skill
(AUCs > 0.75–0.80).

In contrast to the results for the SDM training period of
2003–2013, SDM skill for the marine heatwave years of 2014–
2018 was markedly lower (Figure 3). AUCs were particularly
low for adult sardine, being close to 0.5, or no better than a
random model. The TNM for adult anchovy retained some skill,
however, mean AUCs were still <0.7. In contrast to the other
three species/life stage combinations, the larval anchovy SDMs
did retain some skill for years 2014–2018. The “all” and “geo”
models generally did the best, suggesting that this result was
due to the persistence of previously observed spatiotemporal
structure in larval anchovy distributions.

The observed loss of skill for years 2014–2018 was not
consistent across seasons. Adult sardine and anchovy SDMs
showed improved AUCs (although still <0.75 on average)
for the spring period, but much lower skill during summer
(Supplementary Figure S2). In contrast, the skill of the larval
SDMs was much higher during summer than in spring. In
particular, AUCs for the larval sardine BRTs, GAMs and TNMs
averaged >0.75 for the “all” configurations during summer, but
were generally <0.6 during spring.

The modifications to the Experiment 1 larval SDMs with a
longer testing and training time period allowed the SDMs to use
records from El Niño years with very warm temperatures in the
early 1980s and late 1990s (Figure 4). However, validation skill
on data from 2014 to 2018 did not change markedly for either
sardine larvae or anchovy larvae depending on the testing and
training years used. In fact, SDMs for both taxa showed a slight
decline in validation skill when the testing and training data were
extended back in time to 1997, and then to 1980.

None of the five SDM methods consistently out-performed
the others across both time periods, for all species/life stage
combinations (Figures 3, 4). In particular, the prediction skill
for the three machine learning methods was not substantially
different to those from the GAMs. The skill of the simple TNM
was often weaker during 2003–2013, but it was among the best
SDMs for years 2014–2018 for adult sardine, adult anchovy,
and larval anchovy.

Two-dimensional representations of SDM predictions were
examined by binning observations and SDM predictions by
SST and latitude, and averaging probabilities of occurrence
within each bin. A comparison of these between the testing and
validation time periods suggested some potential drivers of skill
loss for the adult sardine SDMs (Figure 5A). During the model
training time period (2003–2013), sardine were most likely to
be collected where SSTs were between approximately 10 and
18◦C, with somewhat higher probabilities of occurrence north
of 42◦N. This pattern was captured well by the SDMs. During
the marine heatwave years, adult sardine were collected roughly
within this same SST range in the northern study area, but
patterns were much different in the south. Sardine were less likely
to be collected south of 40◦N at SSTs of 10–15◦C than they were
previously, but much more likely to be collected where SSTs were
>19◦C (Figure 5A). This shift was not captured by any of the
SDMs, which all assumed very low probabilities of occurrence in
these very warm conditions, in line with historical observations.
This mismatch is also evident from one-dimensional partial
relationships of adult sardine to SST, across all observations and
SDMs (Supplementary Figure S3).

Two-dimensional representations of larval anchovy SDMs
provide a contrast to the adult sardine SDMs (which performed
the poorest on the validation dataset). Relationships between
larval anchovy and SST with latitude remained much more
constant between the training and validation time periods
(Figure 5B). Larval anchovy were collected at SSTs of
approximately 11–23◦C throughout the time series, with two
centers of abundance around 33–35◦N, and 40–48◦N. All of
the SDMs captured these patterns well for the training years.
While the SDMs were also able to predict the general patterns
of distribution in the validation years, all underestimated overall
probabilities of occurrence during 2014–2018, particularly at
cooler SSTs < 19◦C (Figure 5B and Supplementary Figure S3).

A comparison of observations and SDM predictions for two
example years with relatively good sampling coverage (2008
and 2015) showed the contrasting responses of both species
and life stages to the marine heatwave. Distributions of both
adult and larval sardine appeared to move northward during
spring 2015 (Figure 6A), although sampling coverage was not
as comprehensive as in 2008. In 2008, both adult and larval
sardine were concentrated south of 40◦N during April and
May, coinciding with areas of highest predicted probability from
all of the SDMs. In 2015, adult sardine were not common in
the trawl surveys, due to their low spawning stock biomass,
but those that were present were located between 38 and
44◦N. While the SDMs also predicted a northward shift in
habitat, these predictions did not align exactly with observations,
particularly for the GAMs and MLPs. Similarly, predictions
from the larval sardine SDMs suggested a northward shift, but
models underestimated the extent of the observed change in
larval distributions (Figure 6A). The GAMs and MLPs did
show some favorable habitat between 40 and 45◦N, where larvae
were collected, but also showed favorable habitat off southern
California, where sampling collected very few larvae.

In contrast to sardine, adult and larval anchovy did not show
strong northward shifts during summer 2015 (Figure 6B). Adult
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FIGURE 3 | Area Under the Receiver Operating Curve (AUC) skill metrics for Experiment 1 SDMs. Means and standard deviations across all SDM ensembles (see
Figure 1) are shown for each life stage of each species. Colors of bars denote the SDM configuration (“all,” “env,” or “geo”). The horizontal black dashed lines show
AUC values of 0.5 (no better than a random model), and 0.75 (a rough approximation of a “useful” model), for reference.
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FIGURE 4 | SST anomalies averaged across the ROMS domain from 1980 to 2018 (top), and validation AUCs for years 2014–2018 for larval sardine and larval
anchovy SDMs trained using data from (A,B) 2003–2013 (i.e., Experiment 1), (C,D) 1997–2013, (E,F) 1980–2013. Means and standard deviations across all SDM
ensembles (see Figure 1) are shown for each life stage of each species. Colors of bars denote the SDM configuration (“all,” “env,” or “geo”). The horizontal black
dashed lines show AUC values of 0.5 (no better than a random model), and 0.75 (a rough approximation of a “useful” model), for reference.

anchovy were present between 37 and 48◦N during July and
August of both 2008 and 2015. This was captured better by the
GAMs than the other SDMs for these particular years. Although
larval sampling coverage differed between the years, the two
centers of larval anchovy abundance appeared to persist during
both 2008 and 2015 (Figure 6B). This persistence occurred
despite strongly contrasting environmental conditions between

the 2 years (Figure 1). However, while SST was moderately
important to the larval anchovy SDMs, it was less influential
than latitude and longitude (Supplementary Figure S4). SST
was also not a strong contributor to the adult anchovy SDMs.
Anchovy thus appeared more likely to maintain their historical
spatiotemporal distribution patterns than sardine, partially due
to weaker relationships with SST.
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FIGURE 5 | Two-dimensional partial responses of Experiment 1 SDMs for adult sardine (A) and anchovy larvae (B) against SST and latitude, integrated across all
other predictors. Predictions from the five SDM types are shown, as well as a summary of observations (mean probabilities of occurrence within 1◦ SST and latitude
bins) for years 2003–2013 (left) and 2014–2018 (right). The black dash box in (A) draws attention to sardine observations from 2014 to 2018 which were poorly
predicted by the SDMs.

The maps in Figures 6A,B suggested that the SDMs
often captured some aspects of distribution patterns, but that
predictions were not precisely aligned with observations. To

test the effect of spatial resolution on SDM skill, we thus
aggregated all predictions and observations to 2 × 2◦, taking
the maximum value of each within each cell. AUCs increased
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FIGURE 6 | Predicted and observed distributions of sardine and sardine larvae during April–May (A), and anchovy and anchovy larvae during July–August (B), for
two examples years. SDM predictions are a mean across Experiment 1 SDM ensembles (see Figure 2). Observed presences are shown in maroon dots, observed
absences by black crosses.

to >0.75 on average for most of the BRTs, GAMs, RFOs, and
TNMs for sardine larvae, for the adult anchovy TNMs, and for
the “env” GAMs and TNMs for adult sardine using these spatial
coarsened data, but remained <0.75 for all other models (results
not shown). Collapsing observed and predicted probabilities of
occurrence even further, down to means within 2◦ latitudinal
blocks, showed that SDMs were more successful at capturing
the general direction of change than the magnitude of change
(Figure 7). For example, both the adult and larval sardine
SDMs captured the tendency for there to be more sardine in
the northern CCS and less in the south during spring, but
under-predicted the scales of these shifts. In contrast, the adult
anchovy GAMs and MLPs correctly predicted an increase in

overall probabilities of occurrence but were unable to reproduce
the spatial patterns of these increases. The larval anchovy SDMs
correctly predicted the spatial persistence of the two main
spawning locations in 2014–2018 and the increase in probabilities
of occurrence in the northern CCS (Figures 6B, 7). However,
the models were not able to predict the observed increases in
probabilities of larval anchovy occurrence in the southern CCS.

Sampling coverage during the model training time period
(2003–2013) was generally more spatially extensive and covered
more negative habitat than during the validation period (2014–
2018), a trend evident in Figures 6A,B. To assess the potential
impact of this difference on 2014–2018 AUCs, we re-scored
data from these years with some “dummy” negative stations
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FIGURE 7 | Mean observed (black) and SDM predicted (colors) probabilities of occurrence of each life stage of each species in spring (April–May) and summer
(July–August) by 2◦ latitude bins, for the test (2003–2013) and validation (2014–2018) time periods for Experiment 1.

added. These negative stations were located at aggregated 1 × 1◦
locations sampled only during 2003–2013 but not 2014–2018,
and where no sardine or anchovy were recorded during the
earlier period. Dummy negative stations were calculated and
added separately for the trawl and larval datasets, with one
station each added for each location in each year (2014–2018)
at the end of April, and the end of July, to capture the two
best sampled seasons. Environmental data were extracted at these
new locations, and re-scored through the SDMs. AUCs for this
new dataset including dummy negative stations were generally
higher than for the original data (Supplementary Figure S5).
This improvement was more marked for adult sardine and
anchovy than for larvae, suggesting that lower and more inshore
spatial coverage in trawl surveys in recent years may have led to
lower AUCs for these life stages. However, the general patterns

of skill loss remained consistent, with adult SDMs retaining better
skill in spring versus summer, and larval SDMs retaining more
skill during summer.

Experiment 2: Near-Average Conditions
Area Under the Receiver Operating Curves for validation years
were generally higher in Experiment 2 than for the same taxa and
SDMs in Experiment 1 (Figure 8). This result suggested that SDM
predictions were more successful in unseen years if the training
data covered a more complete range of environmental conditions
and/or stock sizes. In particular, larval sardine distributions were
well predicted for 2003–2007, in contrast to the strong loss of skill
in Experiment 1. The most skillful SDM configurations for larval
sardine were “all” and “geo,” suggesting that this skill resulted
from SDMs being better able to capture spatiotemporal structure
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in distributions. Experiment 2 AUCs for withheld validation
years also improved for adult sardine and adult anchovy, but
mostly remained <0.75. Notably, the adult anchovy SDMs were
the only ones to lose substantial skill between the test and
validation time periods in Experiment 2. This was partially due to
the comparative rarity of anchovy in these earlier years, a result
of lower spawning stock biomass and less trawl sampling during
summer. Anchovy larvae AUCs for Experiment 2 were slightly
weaker than for Experiment 1, but still remained fair to good for
all SDMs except for the “env” TNM. These results indicate that
the SDMs were largely capable of retaining reasonable skill for
years not included in the model training and testing process. The
marked loss of skill observed for validation years in Experiment 1
may therefore have resulted mostly from the novel environmental
conditions and unexpected species responses to those conditions,
rather than SDM overfitting.

To provide a “best case” model comparison against results
from Experiments 1 and 2, we lastly re-trained the SDMs using
all available data from 2003 to 2018 (50% each for model
training and testing, no data withheld for external validation).
A comparison of mean AUC by year and SDM type suggested that
the RFOs and BRTs were mostly able to maintain good predictive
skill throughout the entire time series, as long as they were
initially trained on data including observations from the marine
heatwave years, and observations across a range of stock sizes
(Figure 9). The MLPs, GAMs, and TNMs also showed useful skill
in some years for most taxa, but usually performed less skillfully
than the BRTs and RFOs, implying that the tree-based SDMs were
best able to capture the complex responses of our species to their
environment across different environmental regimes. Results
from all sets of SDMs together thus indicate that although some
of the machine-learning SDMs were flexible enough to maintain
reasonable skill both before and during the marine heatwave,
most could only do so if they had access to observations from
heatwave years during the model training process. Otherwise, the
models had no way to anticipate the non-stationary responses
of species to anomalously warm temperatures, and lost much of
their predictive skill.

DISCUSSION

Our results show that most SDMs lost substantial predictive skill
during novel environmental conditions experienced during the
recent marine heatwave, regardless of the type of model or the
suite of covariates used. However, performance differed among
species and life stages. There was no single best type of SDM,
although including spatial variables was generally useful. We note
that global statistical performance may not always completely
represent model value, as some SDMs could capture the general
spatial direction of change, even if they could not replicate the
observed magnitude.

Importance of Robust SDM Validation
Loss of SDM skill on out-of-model validation datasets is not
uncommon, and can be broadly attributed to four issues: (1)
model overfitting during training (Elith, 2019), (2) unreasonable

model behavior during extrapolation (Hannemann et al., 2015;
Beaumont et al., 2016), (3) the selection of irrelevant predictors
which do not impact distribution (Steen et al., 2017), and
(4) non-stationarity in relationships between a species and its
environment (Dormann et al., 2012; Yates et al., 2018). Some
degree of over-fitting to the training data may be expected with
the more flexible machine learning SDMs used in this study
(i.e., BRTs, MLPs, RFOs). However, it was notable that (with
the exception of adult anchovy), the GAMs and TNMs showed
similarly poor skill to the more complex SDMs for the validation
time period. The primary driver of skill loss for years 2014–
2018 is thus unlikely to be simply a problem of overfitting in
the more complex models. Similarly, the extrapolation behavior
of the SDMs to anomalously warm temperatures did not appear
to be biologically unreasonable. For example, adult sardine were
most commonly collected at SSTs between 9 and 18◦C in the
Southern California Bight between 2003 and 2013. The SDMs
all predicted that this pattern would continue during 2014–2018,
and all predicted low probabilities of occurrence where SSTs were
warmer than 18◦C. In contrast, observations showed that adult
sardine were collected with relatively high occurrence in these
southern locations, in waters as warm as 21.7◦C. These very warm
temperatures were rarely sampled between 2003 and 2013.

The third and fourth issues identified above are likely more
relevant to our results. Statistical relationships between our
species and their environment changed between the model
training and validation time periods, particularly for adult
sardine. While the relative importance of each predictor to the
SDMs frequently varied across model type, all SDMs tended
to show similar skill loss during 2014–2018. This suggests
that none of the SDMs successfully captured the true drivers
of spatial distribution for sardine and anchovy in our study
region. The exception was larval anchovy, where the SDMs
successfully predicted that the main distribution drivers were
environmentally invariant geospatial predictors. However, we
note that aggregating observations and predictions to a coarser
spatial resolution improved the validation skill of some SDMs
to more acceptable levels, and did qualitatively capture the
northward shifts in adult and larval sardine distributions during
the marine heatwave years. The spatial contraction of sampling
effort in recent years may also have led to some relative loss
of skill from reduced sampling in strongly negative habitats. In
addition, breaking results down by season showed that the larval
sardine SDMs performed better during summer, while the adult
SDMs showed some improvement in skill during spring. These
results suggest that better understanding of spatial processes
and spawning phenology should allow the development of more
reasonable predictive models in the future.

Our results highlight another important recommendation for
the prediction of species distributions, which is the need to
validate SDM predictions on an entirely withheld dataset. Results
from Experiment 2 show that even when the validation dataset
does not include previous unobserved values for environmental
predictors (e.g., very warm SSTs), some loss of predictive
skill is still possible for some taxa. However, Experiment
2 SDMs (validated against near-average conditions) generally
maintained much better skill than those built under Experiment
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FIGURE 8 | Area Under the Receiver Operating Curve (AUC) skill metrics for Experiment 2 SDMs. Means and standard deviations across all SDM ensembles (see
Figure 1) are shown for each life stage of each species. Colors of bars denote the SDM configuration (“all,” “env,” or “geo”). The horizontal black dashed lines show
AUC values of 0.5 (no better than a random model), and 0.75 (a rough approximation of a “useful” model), for reference.
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FIGURE 9 | Mean Area Under the Receiver Operating Curve (AUC) test skill metrics for SDMs trained on random 50% splits of all available data from 2003 to 2018,
for the “all” covariate configuration only. Colors denote the SDM type. The horizontal black dashed lines show AUC values of 0.5 (no better than a random model),
and 0.75 (a rough approximation of a “useful” model), for reference.

1 (validated against novel conditions). If there are sufficient
observations, the splitting of data into a model training, testing,
and external validation set should be standard practice for
properly assessing model skill, particularly for the highly flexible
machine learning SDMs (Özesmi et al., 2006). This is particularly
important if SDMs are to be transferrable to times, locations, or
environmental conditions not included within the training data.

Influence of Species Ecology on SDM
Performance
Environmental associations of sardine and anchovy in the CCS
have been closely studied for more than 50 years (e.g., Lasker
and Smith, 1977; Fiedler et al., 1986; Lindegren et al., 2013;
Gallo et al., 2019). Extensive previous research suggests that both
species have distinct temperature preferences, especially during
spawning (Lluch-Belda et al., 1991; Green-Ruiz and Hinojosa-
Corona, 1997; Zwolinski et al., 2011; Weber et al., 2018). We
may therefore have reasonably expected that both species would
respond in a predictable way during the unusual environmental
conditions observed in recent years. However, although our
results qualitatively captured some of the phenological shifts in

spawning recorded by previous studies (e.g., McClatchie et al.,
2016; Auth et al., 2018), our SDMs showed a substantial loss
of predictive skill across both species and life stages for years
2014–2018, with the exception of larval anchovy.

Relationships between adult sardine and the ocean
environment appeared to be especially non-stationary. In
particular, none of the SDMs predicted the occurrence of sardine
in warm (>18◦C) waters during 2014–2018. This observation
may be partially due to the increased incursion of adult sardine
from the southern sub-stock into United States waters. The
current stock assessment uses a SST cutoff rule, where sardine
caught at < = 16.7◦C are assumed to be from the northern sub-
stock and those caught at >16.7◦C from the southern sub-stock
(Félix-Uraga et al., 2004; García-Morales et al., 2012; Demer
and Zwolinski, 2014; Hill et al., 2019). However, re-training
and re-validating the adult sardine SDMs only on observations
where SST was <16.7◦C, to remove the influence of the southern
sub-stock, did not improve model validation skill, with all
AUCs for 2014–2018 remaining <0.6 (results not shown). Thus,
although the low historical sampling coverage in waters warmer
than 20◦C may have limited the ability of the SDMs to predict
to these novel conditions in 2014–2018, relationships between
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sardine and their environment also changed substantially during
the heatwave years even within cooler temperatures. In addition,
re-training the larval sardine SDMs using data back to 1980
did not result in more skillful predictions in 2014–2018. These
results suggest that distribution patterns and environmental
associations for early life stages of sardine during the marine
heatwave were unprecedented over the 38 years where larval data
were available, despite several strong El Niño events occurring
during this timeframe.

In contrast to the other species/life stage combinations, adult
sardine SDM skill for both Experiment 2 and for the full models
trained on years 2003–2018 mostly remained fair to poor. This
result suggests that even when sardine SDMs were able to use
observations from the marine heatwave years, they struggled
to usefully generalize relationships between this species and
its environment. This issue may partially stem from sardine
migratory behavior. When biomass is high, the two sardine
sub-stocks migrate seasonally. The northern sub-stock moves
between southern California in winter and the Pacific Northwest
in summer, while the southern sub-stock reaches southern
California during summer and returns to coastal Baja California
in winter (Lo et al., 2011; Demer et al., 2012). The two sub-stocks
thus overlap strongly in space but much less so in time, giving
the appearance of largely separate temperature habitats between
the two groups. However, laboratory studies show that sardine
larvae and adults from both sub-stocks can tolerate very similar,
and broad (∼ 9–27◦C), thermal ranges if given the opportunity
to acclimate (Lasker, 1964; Brewer, 1976; Martínez-Porchas et al.,
2009; Pribyl et al., 2016). The strong importance of SST to the
sardine SDMs (Supplementary Figure S4) is thus unlikely to
represent a purely physiological constraint. Previous studies have
also found relationships between sardine and temperature to be
complex. For example, McClatchie et al. (2010) showed that a
long-standing SST-recruitment relationship for sardine was non-
stationary through time, and had reduced predictive skill when
applied to more recent data.

During the anomalous conditions of the marine heatwave,
adult sardine may also have changed their migration and
spawning phenology in response to conditions experienced weeks
or months before sampling, leading to observed distribution
shifts that did not follow historical environmental associations
(see Figure 5A). As older, mature sardine comprise the bulk
of the migrant population (Lo et al., 2011; McDaniel et al.,
2016), the poor prediction skill during the marine heatwave
period may also have been associated with changes in sardine
age structure. The 2015–2018 sardine population was not only
low in abundance, but trawl acoustic survey data showed
younger age classes dominating the age composition (Hill
et al., 2019). Younger fish may not have migrated as far
north during these years, which may have contributed to the
observed latitudinal mismatch between observations and SDM
predictions for sardine.

The only species and life stage to retain good skill during
the marine heatwave years was larval anchovy. However, this
skill derived mostly from the inclusion of geospatial predictors
in the SDMs, suggesting that anchovy spawning did not shift

markedly in space or time in recent years. This was confirmed
by the map comparisons in Figure 6B, showing the spatial
persistence of two spawning areas for anchovy in summer
during a near-average year (2008) and a heatwave year (2015).
This was an unexpected result, as including fixed geospatial
predictors in SDMs should theoretically reduce their usefulness
for extrapolating to novel environmental conditions. However,
previous studies have shown that anchovy in the northern
CCS can be associated with the Columbia River plume during
warmer months (Emmett et al., 2005; Litz et al., 2008). Spawning
anchovy may therefore have maintained their association with
this oceanographic feature during the heatwave years, despite the
presence of anomalously warm temperatures.

Although the spatial structure of anchovy spawning activity
persisted during the marine heatwave, their ability to maintain
historical spawning areas under future warming is not clear (e.g.,
Howard et al., 2020). Climate change is expected to result in
mean upper ocean temperature increases of 2–4◦C in the CCS
by 2100 under the RCP8.5 “business as usual” scenario, with
future marine heatwaves leading to even higher SST extremes
(Woodworth-Jefcoats et al., 2017; Alexander et al., 2018). While
SDMs including geospatial predictors often did better for the
marine heatwave test case described in this study, it is probably
not reasonable to assume that these relationships will continue
to hold decades into the future. Our results therefore highlight
the ongoing need for improved mechanistic understanding of
movement and distribution drivers for sardine and anchovy in
the CCS, if climate change impacts on these species are to be
realistically predicted over longer time horizons.

The difficulties inherent to predicting the distributions of
migratory species with broad physiological tolerances are also
apparent from our results, and have been described for other
species previously (e.g., Dambach and Rödder, 2011; Yates et al.,
2018). Sardine migratory behavior depends on population size,
sub-stock structure, and age composition (Lluch-Belda et al.,
1986; Demer et al., 2012; McDaniel et al., 2016). As a result,
the presence or absence of sardine and their larvae in the CCS
may depend partially on environmental conditions at the time
of sampling, and partially on environmental and population
drivers of migration and spawning condition earlier in the
season. In addition, the same environmental conditions which
cause shifts in suitable habitats can also impact recruitment
and biomass, which are themselves linked to migration and
distribution patterns. During the marine heatwave years, sardine
biomass declined to very low levels while anchovy biomass
increased sharply (Harvey et al., 2019; Hill et al., 2019). As
a result, both environmental conditions and stock biomass
for both species during 2014–2018 were outside the ranges
of the training period. A combination of both factors, and
interactions between them, likely contributed to loss of SDM
skill. This is a central problem with using SDMs to predict or
project species distributions into the future: it is often more
straightforward to anticipate shifts in potential environmental
niches than it is to model the complex relationships between
stock productivity, movements, and realized habitat use (e.g.,
Koenigstein et al., 2016).

Frontiers in Marine Science | www.frontiersin.org 17 July 2020 | Volume 7 | Article 589

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00589 July 28, 2020 Time: 16:44 # 18

Muhling et al. CCS Species Distribution Models

Other complex factors can drive decoupling of species
distributions from their immediate environment, including
the persistence of anomalous range extensions even after
environmental conditions have returned to normal [e.g.,
bottlenose dolphin (Tursiops truncatus) off central California:
Wells et al., 1990]. Migratory schooling animals may also
show inertia in their behaviors deriving from collective
memory (Macdonald et al., 2018), or from interactions between
environmentally invariant and environmentally responsive
movement behaviors (Bauer et al., 2011; Winkler et al., 2014).
Taken together, these considerations suggest that caution is
required when attempting to use statistical SDMs for future
projections of pelagic species habitats. It is worth noting that
a similar study predicting marine mammal distributions in
the CCS during the 2014–2016 marine heatwave showed
higher model skill than we describe here (Becker et al., 2018).
Correlative SDMs may therefore still have use for certain climate
prediction problems within some ecosystems. Progression
toward more mechanistically informed distribution models
which incorporate processes such as metabolism, energy budgets,
foraging ecology, and migratory behavior can alleviate some
of the drawbacks of statistical SDMs (e.g., Lehodey et al.,
2008; Planque et al., 2011; Deutsch et al., 2015; Fiechter et al.,
2015; Rose et al., 2015; Koenigstein et al., 2016; Howard et al.,
2020). However, a sound understanding of physiological drivers
across different species is required before the best modeling
framework can be identified (Yates et al., 2018), and there
are insufficient data available on these processes for many
marine taxa.

Conclusion and Recommendations
Overall, our results suggest that statistical relationships defined
in correlative SDMs can break down when confronted with
novel environmental conditions. This loss of skill was relatively
consistent across the five SDMs examined, despite strong
differences in model complexity. While a lack of transferability
of SDMs in time or space can result from multiple mechanisms
(Yates et al., 2018), in our case, the non-stationary responses
of our two test species to changes in their ocean environment
were particularly influential. Whether the rate of change of
the environment contributed to this non-stationarity is unclear
(heatwaves represent sudden anomalous change), and validation
of long time series would be a valuable test of longer term
non-stationarity. Although sardine and anchovy are well-
studied forage species in the CCS, their complex environmental
associations and behaviors challenged our ability to effectively
model their distributions across different oceanographic regimes.
Our results thus show the importance of understanding the
mechanistic drivers of range shifts in marine species, and the
difficulties intrinsic to modeling the distributions of mobile,
migratory animals.

We recommend that future work explores methods for
including migration and spawning phenology in SDMs for
sardine and anchovy in the CCS, for example via correlative
SDMs which include spatially remote or time-lagged processes
(Thorson et al., 2020), further development of mechanistic
models (e.g., Rose et al., 2015), or exploration of hybrid

correlative-mechanistic approaches. Development of distribution
models by age group, or use of a measure of age composition
as an additional covariate may also be beneficial for sardine
SDMs. Consistent sampling across a wider range of thermal
environments may also allow better definition of potential versus
realized habitats for both species. Ultimately, if the SDMs
described in this study can be improved to better represent the
underlying processes driving distribution shifts in sardine and
anchovy, they will be more useful for anticipating the potential
impacts of climate change and anomalous environmental events
on the future assessment and management of these species, and
on the broader CCS.
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