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Abstract
1.	 Dynamic	management	(DM)	is	a	novel	approach	to	spatial	management	that	aligns	
scales	 of	 environmental	 variability,	 animal	 movement	 and	 human	 uses.	 While	
static	approaches	to	spatial	management	rely	on	one-time	assessments	of	biologi-
cal,	environmental,	economic,	and/or	social	conditions,	dynamic	approaches	re-
peatedly	 assess	 conditions	 to	 produce	 regularly	 updated	 management	
recommendations.	Owing	 to	 this	 complexity,	 particularly	 regarding	 operational	
challenges,	examples	of	applied	DM	are	rare.	To	implement	DM,	scientific	meth-
odologies	 are	operationalized	 into	 tools,	 i.e.,	 self-contained	workflows	 that	 run	
automatically	at	a	prescribed	temporal	frequency	(e.g.,	daily,	weekly,	monthly).

2.	 Here	we	present	a	start-to-finish	framework	for	operationalizing	DM	tools,	con-
sisting	of	four	stages:	Acquisition,	Prediction,	Dissemination,	and	Automation.	We	
illustrate	 this	operationalization	 framework	using	an	applied	DM	tool	as	a	case	
study.

3.	 Our	DM	 tool	 operates	 in	 near	 real-time	 and	was	 designed	 to	maximize	 target	
catch	and	minimize	bycatch	of	non-target	and	protected	species	 in	a	US-based	
commercial	fishery.	It	is	important	to	quantify	the	sensitivity	of	DM	tools	to	miss-
ing	 data,	 because	 dissemination	 streams	 for	 observed	 (i.e.,	 remotely	 sensed	or	
directly	sampled)	data	can	experience	delays	or	gaps.	To	address	this	 issue,	we	
perform	a	detailed	example	sensitivity	analysis	using	our	case	study	tool.

4.	 Synthesis and applications.	Dynamic	management	(DM)	tools	are	emerging	as	via-
ble	management	 solutions	 to	 accommodate	 the	biological,	 environmental,	 eco-
nomic,	and	social	variability	in	our	fundamentally	dynamic	world.	Our	four-stage	
operationalization	framework	and	case	study	can	facilitate	the	implementation	of	
DM	tools	for	a	wide	array	of	resource	and	disturbance	management	objectives.
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1  | INTRODUC TION

Spatial	management	 is	 frequently	used	by	governing	bodies	 to	
govern	human	 interactions	with	natural	 resources	 (e.g.,	 timber	
stands,	wild	 fish	 stocks)	 and	disturbances	 (e.g.,	 shipping	 lanes,	
oil	spills),	 thereby	achieving	objectives	for	nature	conservation	
and	human	use	 (Margules	&	Pressey,	2000).	Dynamic	manage-
ment	 (DM)	 is	 an	 emergent	 approach	 in	 which	 spatial	 bounda-
ries	 and	 management	 recommendations	 (i.e.,	 advisories	 that	
spatially	 and/or	 temporally	 affect	 human	 behaviour)	 are	 flex-
ible	 in	 space	and	 time,	allowing	 scales	of	management	 to	align	
with	 scales	 of	 environmental	 variability,	 resource	 and	 distur-
bance	 dynamism,	 and	 human	 uses	 (Maxwell	 et	al.,	 2015).	 This	
contrasts	 with	 static	 management	 schemes,	 in	 which	 bounda-
ries	 and	management	 recommendations	are	 fixed	 in	 space	and	
time,	 for	 example,	 national	 parks	 and	 superfund	 sites.	DM	ap-
proaches	are	targeted	at	fine	spatial	(kilometres	to	hundreds	of	
kilometres)	and	temporal	(days	to	years)	scales,	allowing	result-
ant	 management	 areas	 to	 entail	 lower	 opportunity	 costs	 than	
static	 approaches	 (Dunn,	 Maxwell,	 Boustany,	 &	 Halpin,	 2016;	
Hazen	et	al.,	2018).	Although	a	number	of	operational	examples	
of	DM	exist	(e.g.,	Hobday	&	Hartmann,	2006;	Kavanaugh,	Fisher,	
&	 Derner,	 2013;	 O’Keefe	 &	 DeCelles,	 2013),	 traditional	 static	
management	 remains	 the	 most	 widely	 used	 approach	 (Chape,	
Harrison,	Spalding,	&	Lysenko,	2005),	due	in	part	to	challenges	
with	 DM	 operationalization.	 While	 static	 approaches	 rely	 on	
single	assessments	of	biological,	environmental,	economic,	and/
or	social	 (BEES)	conditions	and	one	resultant	management	rec-
ommendation,	DM	approaches	regularly	prescribe	new	manage-
ment	recommendations	based	on	changing	BEES	conditions.	To	
implement	this	complex	task,	DM	schemes	are	often	operation-
alized	 into	 tools,	 which	 are	 self-	contained	workflows	 that	 run	
automatically	at	an	appropriate	temporal	 frequency	 (e.g.,	daily,	
weekly,	monthly).

Dynamic	management	tools	can	function	as	nowcast	or	fore-
cast	 tools,	 producing	 near	 real-	time	 or	 forecasted	management	
recommendations	 respectively.	 Both	 types	 of	 DM	 tools	 rely	
on	 newly	 acquired	 BEES	 data	 relevant	 to	 describing	 the	 target	
features—often	 in	 combination	 with	 statistical	 models	 or	 algo-
rithms—to	calculate	target	feature	attributes	(e.g.,	location,	inten-
sity,	or	speed)	for	near	real-	time	or	forecasted	BEES	conditions.	
Target	feature	attributes	are	used	to	prescribe	management	rec-
ommendations,	 which	 are	 then	 disseminated	 to	 end-	users.	 For	
example,	WhaleWatch	 (Hazen	et	al.,	2017)	uses	a	species	distri-
bution	model	to	describe	relationships	between	blue	whales	(the	
target	feature)	and	a	suite	of	oceanographic	variables	(BEES	data)	
in	order	to	predict	likelihood	of	whale	occurrence	(target	feature	
attribute),	which	then	affects	the	locations	of	marine	operations	
such	as	fishing	and	shipping	(management	recommendation).	The	
Active	 Fire	Mapping	 Program	 (Quayle,	 Sohlberg,	 &	Descloitres,	
2004)	 uses	 an	 algorithm	 that	 describes	 the	 link	 between	 wild-
fires	(the	target	feature)	and	satellite	spectral	bands	(BEES	data)	

to	predict	current	 fire	activity,	 intensity,	and	extent	 (target	 fea-
ture	attributes),	which	then	guide	homeowner	evacuations	(man-
agement	recommendation).	For	example,	mandatory	evacuations	
in	 California,	 USA	 during	 summer	 2018	were	 determined	 using	
Active	Fire	Mapping	Program	data	(Sierra	Sun	Times,	2018).	Coral	
Reef	Watch	 (Liu,	 Strong,	 Skirving,	&	Arzayus,	 2006)	 uses	 an	 al-
gorithm	that	describes	the	relationship	between	coral	bleaching	
events	 (the	 target	 feature)	 and	 sea	 surface	 temperature	 (BEES	
data)	 in	 order	 to	 predict	 bleaching	 hotspots	 (target	 feature	 at-
tribute),	 which	 then	 directs	 restoration	 and	 monitoring	 efforts	
(management	recommendation).	For	example,	Bali	Barat	National	
Park	 in	 Indonesia	has	 implemented	a	coral	bleaching	monitoring	
programme	 based	 on	 Coral	 Reef	 Watch	 data	 in	 which	 bleach-
ing	alerts	trigger	SCUBA	field	checks	 (Marshall	&	Schuttenberg,	
2006).

Glossary

Near real-time:	Of	current,	or	nearly	current	temporal	status

Management recommendation:	An	advisory	that	spatially	and/or	
temporally	affects	human	behaviour,	e.g.,	areas	to	evacuate	during	
floods

Algorithm:	A	stepwise	set	of	rules	to	solve	a	problem	(e.g.,	which	
pixels	have	bleaching	risk	based	on	a	temperature	threshold?)

Statistical model:	A	mathematical	description	of	a	problem	including	
statistical	assumptions	underlying	the	data	(e.g.,	which	habitats	do	
tuna	prefer	based	on	environmental	correlates?)

BEES data or conditions:	Biological,	environmental,	economic,	and/or	
social	data	or	conditions

Observed data:	BEES	data	that	are	remotely	sensed	or	directly	
sampled,	e.g.,	satellite	or	gauge	data

Modelled data:	BEES	data	that	are	predicted	via	statistical	or	
dynamical	models	that	may	be	initialized	with	observed	data,	e.g.,	
climate	forecasts

Dynamic management (DM) tool:	A	family	of	spatial	management	
tools	in	which	management	recommendations	are	regularly	
updated

Nowcast tool:	A	DM	tool	that	produces	management	recommenda-
tions	for	near	real-	time	BEES	conditions

Forecast tool:	A	DM	tool	that	produces	management	recommenda-
tions	for	future	BEES	conditions

Temporal frequency:	The	rate	at	which	a	tool	produces	a	manage-
ment	recommendation

Operationalization:	A	stepwise	process	by	which	a	DM	tool	is	
implemented	and	applied

Target feature:	A	resource	or	threat	managed	by	a	DM	tool

Target feature attribute:	A	calculated	characteristic	of	a	target	
feature,	e.g.,	size	or	severity

Product:	The	end	output	of	a	DM	tool	that	prescribes	a	management	
recommendation	and	optionally	contains	associated	metadata

Latency:	The	temporal	delay	in	the	dissemination	of	DM	products	or	
BEES	data

Contingency plan:	A	set	of	rules	that	govern	DM	tools’	operational	
responses	to	missing	or	sparse	BEES	data
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Four stages of operationalization

Acquisition:	The	regular	collection	of	near	real-	time	or	forecasted	
data	on	BEES	conditions

Prediction:	The	calculation	of	target	feature	attributes	in	near	
real-	time	or	forecasted	BEES	conditions	to	produce	final	products	
that	communicate	management	recommendations

Dissemination:	The	pathways	by	which	products	are	distributed	to	
end-	users

Automation:	The	integration	of	Acquisition,	Prediction,	and	
Dissemination	stages	into	streamlined	workflows	that	run	
automatically	at	a	prescribed	temporal	frequency

Dynamic	management	 tools	 are	 increasingly	 recognized	 as	 core	
components	of	the	spatial	management	toolbox,	and	rapidly	advanc-
ing	computer-	processing	power	and	Earth	Observation	technologies	
are	 likely	 to	 increase	 the	rate	of	DM	tool	development.	 In	 the	 light	
of	 these	developments,	 there	 is	a	need	 for	a	 transparent	step-	wise	
framework	 to	 guide	DM	 tool	 operationalization.	 The	DM	 literature	
focuses	heavily	on	the	use	of	BEES	data	to	describe	target	features,	
and	frequently	relegates	the	remainder	of	the	operationalization	pro-
cess	to	technical	reports	and	metadata.	Here,	we	lay	out	a	four-	stage,	
start-	to-	finish	framework	for	operationalizing	DM	tools:	Acquisition,	
Prediction,	Dissemination	and	Automation	(Figure	1).	The	framework	
is	designed	to	be	trans-	disciplinary	and	applicable	to	multiple	environ-
mental	domains	and	to	a	diverse	array	of	management	aims.	Below	
we	 introduce	 the	 framework	and	outline	how	existing	DM	tools	 fit	
within	 it,	 and	discuss	 the	 trade-	offs	 and	practical	 considerations	at	
each	stage.	We	then	use	a	case	study	to	specify	implementation	of	the	
framework	 in	order	to	operationalize	a	DM	tool.	Finally,	we	discuss	
areas	of	future	exploration	for	successful	operationalization.

2  | MATERIAL S AND METHODS

2.1 | Introduction to the four- stage framework for 
DM tool operationalization

In	order	to	 illustrate	the	framework,	we	collated	10	operationalized	
DM	tools	and	identify	tool	components	(e.g.,	BEES	data	sources,	tar-
get	 feature	 attributes,	management	 recommendations)	within	 each	
of	the	four	stages	(Table	1).	Tools	were	selected	to	cover	diverse	en-
vironments	(marine,	freshwater,	terrestrial,	atmospheric)	and	a	wide	
array	of	management	aims,	such	as	natural	disaster	preparedness,	nat-
ural	resource	management,	and	human	health.	Hyperlinks	to	the	web-
sites	in	which	each	tool	is	described	and	peer-	reviewed	references	are	
provided	in	order	to	facilitate	further	tool	exploration.	The	following	
sections	are	intended	to	be	interpreted	alongside	Table	1	(e.g.,	to	de-
termine	which	tools	acquire	satellite	data),	Figure	1,	and	the	Glossary.

2.2 | Stage 1: Acquisition

Acquisition	is	the	regular	collection	of	near	real-	time	or	forecast	data	
on	BEES	conditions	relevant	to	describing	target	features	and	their	at-
tributes.	Acquired	data	can	be	either	observed,	i.e.,	collected	via	remote	

sensing	(satellite	data	and	radar)	and	direct	sampling	(gauges,	airplane	
reconnaissance,	participant	 reporting),	or	modelled,	 i.e.,	predicted	via	
statistical	or	dynamical	models	 that	may	be	 initialized	with	observed	
data	 (e.g.,	 climate	 forecasts).	When	making	decisions	about	acquiring	
data	types,	tool	developers	must	balance	trade-	offs	between	accessi-
bility,	cost,	spatiotemporal	resolutions,	data	gaps,	and	latency.	Satellite	
and	radar	data	are	publicly	available,	free,	and	served	from	a	wide	array	
of	repositories	that	are	easily	integrated	into	automated	workflows	(e.g.,	
SWFSC/Environmental	 Research	 Division’s	 ERDDAP;	 Simons,	 2017;	
The	Copernicus	Marine	Environmental	Monitoring	Service).	However,	
coarse	spatiotemporal	resolutions	might	render	remotely	sensed	data	
unsuitable	to	describe	highly	dynamic	and/or	fine-	scale	features	(Scales	
et	al.,	 2017).	Directly	 sampled	BEES	data	 can	 capture	 fine-	scale	 spa-
tiotemporal	 characteristics,	 but	 their	 acquisition	 must	 often	 be	 sys-
tematized	specifically	for	the	tool,	making	them	costlier	and	less	easily	
automated.	 For	 example,	 in	WaterWatch’s	 Acquisition	 stage,	 stream	
gauge	readings	are	transmitted	via	satellite,	radio,	and	telephone	telem-
etry,	depending	on	when	gauges	were	 installed.	 In	SMAST’s	Bycatch	
Avoidance	Program’s	Acquisition	stage,	bycatch	events	are	transmitted	
by	participating	 vessels	 via	 ship-	to-	shore	 email	 (O’Keefe	&	DeCelles,	
2013).	Dissemination	streams	for	observed	BEES	data	can	experience	

F IGURE  1 The	four	stages	of	operationalizing	a	dynamic	
management	tool	(hollow	fill)	and	internal	components	(grey	fill).	
The	framework	is	relevant	to	operationalizing	tools	at	one	point	in	
time	and	does	not	encompass	tool	updates	as	new	data	become	
available
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temporal	delays	and	spatial	gaps	(e.g.,	gappiness	in	satellite	data	caused	
by	clouds	and	aerosols,	Roy	et	al.,	2008),	causing	errors	in	the	manage-
ment	recommendations	produced	by	DM	tools.	By	evaluating	tool	sen-
sitivity	to	different	scenarios	of	missing	and	spatially	gappy	data	prior	to	
operationalization,	contingency	plans	can	be	developed	to	guide	tools’	
operational	 responses	 during	 the	 Acquisition	 stage.	 Modelled	 BEES	
data	are	generated	and	housed	on	servers	allowing	them	to	be	easily	ac-
quired	and	integrated	into	tools,	and	can	alleviate	issues	with	data	gaps	
or	latency.	However,	model	output	may	introduce	biases,	and	may	be	
costly	to	create	and	maintain	if	models	are	being	developed	specifically	
for	the	tool	(Christensen,	Boberg,	Christensen,	&	Lucas-	Picher,	2008).

2.3 | Stage 2: Prediction

In	the	Prediction	stage,	newly	acquired	BEES	data	are	post-	processed	
into	 final	 products	 that	 communicate	management	 recommendations	
that	 spatially	 and/or	 temporally	 affect	 human	 behaviour,	 advising	 for	
example,	areas	to	fish,	areas	to	evacuate,	or	areas	to	target	environmen-
tal	restoration.	To	produce	management	recommendations,	tools	often	
use	statistical	models	or	algorithms	designed	to	describe	target	features	
based	on	newly	acquired	BEES	data.	For	example	 in	BirdWatch’s	pre-
dictions	stage,	an	algorithm	is	applied	to	calculate	bird	migration	veloc-
ity	profiles	 from	weather	surveillance	radars	 (Farnsworth	et	al.,	2016).	
Eveson,	Hobdaya,	Hartoga,	Spillman,	and	Rough	(2015)	coupled	a	statis-
tical	habitat	preference	model	for	tuna	with	an	environmental	forecast-
ing	model	to	forecast	suitable	habitat.	Other	tools	produce	management	
recommendations	by	aggregating	and	summarizing	newly	acquired	BEES	
data	(Bethoney,	Schondelmeier,	Stokesbury,	&	Hoffman,	2013;	O’Keefe	
&	DeCelles,	2013).	For	example,	in	WaterWatch’s	prediction	stage,	data	
from	USGS	stream	station	gauges	are	aggregated	and	summarized	rela-
tive	to	baseline	conditions.	Because	they	spatially	affect	human	behav-
iour,	management	recommendations	are	converted	into	final	products	
that	 convey	 spatial	 information	 in	 some	 format,	 for	 example,	 in	 geo-
referenced	files	(e.g.,	shapefiles,	rasters,	NetCDFs,	KMZ	files),	mapped	
images,	 latitude-	longitude	coordinate	pairs,	or	 text-	based	descriptions	
for	 known	areas	on	 the	 ground	 (O’Keefe	&	DeCelles,	 2013).	 Product	
format	should	be	tailored	for—and	developed	 in	consultation	with	the	
end-	users	(Eveson	et	al.,	2015;	Petchey	et	al.,	2015)	to	ensure	that	their	
technical	capabilities,	Internet	and	phone	accessibility,	and	preferences	
are	matched	by	product	formats.	Often,	tools	serve	products	in	multiple	
formats	to	meet	various	scenarios	of	use,	e.g.,	a	simple	format	that	works	
in	low	bandwidth	areas	and	a	detailed	format	for	high	bandwidth	areas.	
The	chosen	product	format	will	directly	affect	the	dissemination	(stage	
3)	pathway	taken.

2.4 | Stage 3: Dissemination

Dissemination	 is	 the	pathway	by	which	 final	 products	 reach	 the	
end-	users.	 Simple	web-	based	 approaches	 can	 disseminate	 prod-
ucts	 via	 images	 hosted	 on	websites	 or	 persistent	URLs.	 A	more	
advanced	web-	based	approach	 is	to	host	products	as	 interactive	
maps	with	options	to	provide	higher	 level	detail.	For	technologi-
cally	 savvy	 end-	users,	 georeferenced	 data	 can	 be	 downloaded	

and	explored	locally	in	GIS	platforms.	These	options	assume	that	
the	end-	users	will	regularly	check	for	new	web	content.	Rich	Site	
Summary,	 text	 and	 email	 (O’Keefe	&	DeCelles,	 2013)	 based	dis-
semination	 pathways	 require	 initial	 subscription,	 but	 afterwards	
do	 not	 necessitate	 end-	user	 action.	 Smartphone-	based	 apps,	
which	 are	 already	 widely	 used	 for	 near	 real-	time	 data	 collec-
tion	 and	 display	 (e.g.,	 WhaleAlert:	 http://www.whalealert.org/;	
eCatch:	 https://www.ecatch.org/),	 represent	 another	 promising	
dissemination	pathway	for	DM	products.	The	above	pathways	are	
not	mutually	exclusive,	and	in	some	circumstances	the	use	of	mul-
tiple	dissemination	pathways	might	be	advantageous	to	meet	the	
needs	of	different	end-	users.

2.5 | Stage 4: Automation

Automation	 is	 the	 integration	 of	 the	 Acquisition,	 Prediction,	 and	
Dissemination	 stages	 into	 streamlined	 workflows	 that	 self-	initiate	
at	prescribed	temporal	 frequencies.	Automation	 is	 the	backbone	of	
operationalization	 and	 a	 critical	 step	 to	 creating	 reliable	 products.	
However,	 automation	happens	behind	 the	 scenes	and	 templates	 to	
follow	 are	 typically	 not	 readily	 available.	 To	 facilitate	 automation,	
code	 libraries	 can	 be	made	 publicly	 available	 on	 open-	access	 plat-
forms	(e.g.,	the	open-	access	WhaleWatch	code	library:	https://github.
com/evanhowell/WhaleWatch).	 The	 details	 of	 automation	 depend	
on	tool	characteristics,	but	the	following	best	practice	principles	are	
likely	to	be	ubiquitous:	(a)	as	far	as	possible,	house	all	tool	components	
in	 the	same	 location	 (e.g.,	 run	 tools	on	 the	same	servers	 that	 store	
and	process	BEES	data);	(b)	when	building	cross-	platform	workflows,	
ensure	functional	advantages	are	worth	potential	trade-	offs	with	pro-
cessing	speed	and	complexity;	and	(c)	log	internal	errors	such	as	code	
breaks	to	aid	debugging.	Additionally,	internal	flags	may	be	useful	to	
trigger	alternative	tool	behaviours	(e.g.,	not	producing	a	management	
recommendation)	when	acquired	BEES	data	or	predicted	target	fea-
ture	attributes	are	outside	normal	ranges.	Tools’	temporal	frequencies	
should	align	with	desired	temporal	scales	of	management	recommen-
dation	but	will	often	be	constrained	by	available	BEES	data.

3  | RESULTS

3.1 | Implementation of the four- stage framework: 
A fisheries sustainability case study

Here	 we	 demonstrate	 the	 four-	stage	 operationalization	 framework	
outlined	above	using	an	established	multispecies,	multivariate	dynamic	
ocean	management	tool	(EcoCast)	designed	to	balance	fisheries’	envi-
ronmental	and	economic	sustainability	for	a	US-	based	commercial	fish-
ery	(Hazen	et	al.,	2018).	EcoCast	was	developed	for	the	California	Drift	
Gillnet	Fishery,	which	operates	seasonally	in	the	western	United	States’	
Exclusive	Economic	Zone	from	August	to	November.	The	Drift	Gillnet	
Fishery	targets	swordfish	 (Xiphius gladius),	but	experiences	unwanted	
catch	(i.e.,	bycatch)	of	species	including	blue	sharks	(Prionace glauca),	pro-
tected	leatherback	turtles	(Dermochelys coricea),	and	California	sea	lions	
(Zalophus californianus),	threatening	the	environmental	sustainability	of	

http://www.whalealert.org/
https://www.ecatch.org/
https://github.com/evanhowell/WhaleWatch
https://github.com/evanhowell/WhaleWatch
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the	Drift	Gillnet	Fishery.	In	response,	an	interdisciplinary	team	of	gov-
ernmental,	academic,	and	NGO	researchers	developed	EcoCast,	a	DM	
tool	designed	to	reduce	bycatch	of	protected	and	vulnerable	species	
while	minimizing	reductions	in	target	catch	(Hazen	et	al.,	2018).

EcoCast	was	developed	by	fitting	statistical	models	(boosted	re-
gression	trees,	Elith,	Leathwick,	&	Hastie,	2008)	to	describe	the	pre-
ferred	habitats	of	 the	 target	 species	 (swordfish;	Scales	et	al.,	2017),	
and	 three	 bycatch	 species	 (blue	 sharks,	 leatherback	 turtles,	 and	
California	sea	lions).	In	the	operationalization	framework,	these	spe-
cies	are	 the	 target	 features.	Boosted	 regression	 trees	 for	each	spe-
cies	are	predicted	over	environmental	variable	layers	(BEES	data;	see	
Supporting	Information	Appendix	S1:	Table	S1)	to	produce	daily	habi-
tat	suitability	layers,	i.e.,	georeferenced	raster	surfaces	(target	feature	
attributes).	Species	risk	weightings—set	to	reflect	management	prior-
ities	and	recent	catch	events—are	then	applied	to	increase	or	reduce	
the	influence	of	each	species	in	the	final	product	(Hazen	et	al.,	2018).	
The	weighted	habitat	suitability	layers	are	summed	and	standardized	
to	values	from	−1	to	1,	where	negative	values	indicate	relatively	low	
target	 catch/high	bycatch	probabilities,	 and	positive	 values	 indicate	
relatively	high	target	catch/low	bycatch	probabilities	(see	Hazen	et	al.,	
2018	for	details	on	environmental	variables,	model	fit,	and	model	val-
idation).	The	EcoCast	product	(e.g.,	Figure	2)	is	a	daily	map	that	pro-
vides	fishers	with	information	on	the	spatial	distribution	of	areas	that	
are	relatively	better	or	poorer	to	fish	(management	recommendation)	
as	a	function	of	the	relative	distributions	of	target	and	bycatch	species.

3.2 | Sensitivity to missing environmental data

The	sensitivity	of	the	EcoCast	tool	to	scenarios	of	missing	environmental	
data	was	evaluated	to	create	a	contingency	plan	that	dictates	the	tool’s	
operational	response	to	missing	data.	Three	possible	responses	to	miss-
ing	data	were	evaluated	for	each	environmental	variable:	(a)	substitute	
a	lagged	version	of	the	variable,	e.g.,	the	variable	from	the	previous	day	
(lagged	variable	response);	(b)	leave	the	variable	out	entirely	(leave-	one-	
out	response);	and	(c)	substitute	a	lagged	version	of	the	EcoCast	product,	
e.g.,	the	product	from	the	previous	day	(lagged	product	response).	It	is	
uncommon	for	variable	 latency	to	exceed	1	week;	however,	data	 lags	
up	 to	1	month	were	evaluated	 to	account	 for	 the	possibility	of	major	
outages.	For	the	lagged	variable	response,	each	variable	was	lagged	in	
turn	by	1,	7,	14,	21,	and	30	days.	For	the	lagged	product	response,	each	
variable	(see	Appendix	S1:	Table	1)	was	lagged	in	turn	by	1–8,	14,	and	
30	days.	Product	accuracy,	or	the	difference	between	a	complete	real-	
time	product	 (i.e.,	 the	 full	product)	and	a	product	created	under	con-
ditions	 of	missing	 data	 (i.e.,	 the	 contingency	 product),	was	 evaluated	
across	all	responses.	The	three	responses	were	evaluated	for	each	day	
in	 the	2012	and	2015	 fishing	seasons	 (n	=	306	days;	an	average	year	
and	an	anomalously	warm	year	respectively).	Accuracy	was	quantified	
by	subtracting	the	contingency	product	from	the	full	product	and	then	
taking	the	absolute	value	to	create	a	layer	of	difference.	The	mean	per	
pixel	difference	between	each	layer	was	averaged	across	two	example	
fishing	seasons,	2012	and	2015.	The	sensitivity	across	responses	was	
compared	to	develop	a	contingency	plan	 for	missing	data,	which	was	
then	built	into	the	Acquisition	stage	(Section	3.3.1).

Results	 of	 this	 sensitivity	 analysis	 (Figure	3)	 indicated	 that	 the	
EcoCast	tool	performed	poorly	when	leaving	variables	out	entirely	
(leave-	one-	out	 response;	 bars	 in	 Figure	3).	 Contingency	 products	
with	individual	variables	(excluding	sea	surface	temperature)	lagged	
up	to	2	weeks	(lagged	variable	response),	and	contingency	products	
lagged	 up	 to	 2	days	 (lagged	 product	 response)	 were	 more	 similar	
to	 the	 full	 product	 than	contingency	products	 created	 leaving	out	
the	least	important	variable	(leave-	one-	out	response).	Contingency	
products	with	 individual	variables	 (excluding	sea	surface	 tempera-
ture)	 lagged	 up	 to	 a	 week	 (lagged	 variable	 response)	 were	 more	
similar	to	the	full	product	than	a	contingency	product	with	a	1-	day	
lag	(lagged	product	response).	Because	it	is	uncommon	for	variable	
latency	to	exceed	1	week,	 the	following	contingency	plan	was	de-
veloped	 out	 to	 1	week:	 For	 each	missing	 variable	 except	 sea	 sur-
face	temperature,	substitute	lagged	versions	up	to	a	7-	day	lag,	after	
which	 substitute	 a	 1-	day	 lagged	 product.	 For	missing	 sea	 surface	
temperature,	 substitute	 lagged	 versions	 up	 to	 a	 4-	day	 lag,	 after	
which	substitute	a	1-	day	lagged	product.	If	variable	latency	exceeds	
the	aforementioned	rules,	the	website	will	display	a	message	that	the	
current	predictions	are	unavailable.	Information	on	variable	latency	
is	included	on	the	product	image	during	the	Prediction	stage	(Section	
3.3.2)	to	ensure	that	metadata	is	not	lost	upon	dissemination,	and	is	
communicated	to	end-	users.

3.3 | Operationalizing a DM tool

Below	we	describe	the	implementation	of	the	four-	stage	operationali-
zation	framework,	using	the	EcoCast	tool	as	an	example.	Unless	stated,	
all	operationalization	stages	for	EcoCast	(Figure	1)	were	implemented	
in	RStudio	(version	1.0.153).	Original	code	is	available	at	https://github.
com/HeatherWelch/EcoCast_Operationalization.	While	 the	 code	 li-
brary	 is	unlikely	to	be	generally	applicable	beyond	EcoCast,	specific	
functions	may	be	 relevant	 to	other	DM	tools.	The	case	study	dem-
onstrated	here	is	implemented	using	the	r	coding	language;	however,	
the	four-	stage	framework	is	applicable	to	other	coding	and	software	
languages.

3.3.1 | Stage 1: Acquisition

Near	real-	time	environmental	variables	(see	Appendix	S1:	Table	S1)	
are	 downloaded	 daily	 as	 netCDF	 (Network	 Common	 Data	 Form)	
files	from	two	online	repositories,	SWFSC/Environmental	Research	
Division	 ERDDAP	 and	 the	 Copernicus	 Marine	 Environmental	
Monitoring	 Service,	 via	 Representational	 State	 Transfer	 (RESTful)	
web	services.	Custom	functions	construct	RESTful	URLs	that	con-
tain	 the	desired	 time-	stamp	and	 spatial	 extent	 specifications.	The	
URLs	are	then	used	to	query	the	web	services	and	resultant	grid-
ded	netCDF	files	are	downloaded	using	the	functions	curlPerform	
(r	package	RCurl	and	writeBin	 [r	package	base])	and	used	 in	post-	
processing	(see	Appendix	S1:	Table	S1).	For	days	in	which	environ-
mental	variables	are	missing,	the	contingency	plan	developed	in	the	
sensitivity	analysis	 (Section	3.2)	 is	applied	to	guide	the	tool’s	han-
dling	of	missing	data.

https://github.com/HeatherWelch/EcoCast_Operationalization
https://github.com/HeatherWelch/EcoCast_Operationalization
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3.3.2 | Stage 2: Prediction

The	species-	specific	boosted	regression	tree	models	described	by	
Scales	et	al.	(2017)	and	Hazen	et	al.	(2018)	were	saved	as.rds	files	
for	 convenient	 reuse	 (function	 saveRDS—r	 package	 Base).	 Each	
day,	 the	 boosted	 regression	 tree	 model.rds	 files	 are	 read	 into	 r 
(function	readRDS—r	package	Base)	and	predicted	over	the	post-	
processed	 environmental	 variables	 (function	 fit.gbm—R	 Package	
GBM)	to	produce	daily	habitat	suitability	 layers	for	each	species.	

Each	species	habitat	suitability	layer	is	multiplied	by	its	risk	weight-
ing,	and	then	all	layers	are	summed	and	standardized	to	values	from	
−1	to	1	to	create	the	final	daily	product	 (e.g.,	Figure	2).	The	daily	
product	 is	 a	mapped	 image	 that	 displays	 predicted	 fishing	 qual-
ity,	providing	fishers	and	managers	with	information	on	the	spatial	
distribution	of	areas	that	are	relatively	better	or	worse	to	fish	(i.e.,	
the	management	recommendation).	Relevant	metadata	embedded	
on	the	image	include	the	latency	of	each	variable,	the	species	risk	
weightings,	contact	information,	and	a	logo	(r	package	Magick).

F IGURE  2 An	example	of	a	daily	
EcoCast	product	disseminated	to	end-	
users
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3.3.3 | Stage 3: Dissemination

The	 EcoCast	 dissemination	 pathways	 were	 developed	 in	 con-
sultation	 with	 industry	 stakeholders	 and	 product	 end-	users.	
Through	 an	 iterative	 feedback	process,	 drift	 gillnet	 fishers	 and	
the	 governing	management	 body	 (Pacific	 Fishery	Management	
Council)	refined	product	delivery	to	meet	end-	user	needs.	Three	
dissemination	 pathways	 were	 developed:	 a	 persistent	 URL,	 a	
web-	based	application	built	using	 the	r	package	Shiny,	 and	 the	
SWFSC/Environmental	 Research	Division	 ERDDAP	 server.	 The	
persistent	 URL	 (http://oceanview.pfeg.noaa.gov/ecocast/)	 is	 a	
web	address	where	content	is	updated	daily	to	provide	the	most	
current	EcoCast	product	while	the	URL	remains	consistent	(e.g.,	
Figure	2).	Because	the	URL	only	hosts	a	small	amount	of	data	(a	
single	 image),	 it	allows	fishers	to	access	EcoCast	while	they	are	
out	at	sea	in	low	bandwidth	areas.

The	second	dissemination	pathway,	the	Shiny	application,	is	an	
interactive	web	application	that	allows	stakeholders	and	the	public	
to	explore	historical	patterns	 in	EcoCast	management	recommen-
dations	 from	 the	previous	 fishing	 season.	Within	 the	Shiny	appli-
cation,	 end-	users	 can	 select	management	 recommendations	 from	
dates	of	interest,	and	use	sliders	to	adjust	the	species	risk	weight-
ings	and	 filter	 the	displayed	values.	Additional	 tick	boxes	provide	
options	 to	 display	 management	 boundaries	 and	 NOAA’s	 naviga-
tional	 charts.	 The	 Shiny	 application	 can	 be	 accessed	 at:	 https://
coastwatch.pfeg.noaa.gov/ecocast/explorer.html.	 Lastly,	 the	
SWFSC/Environmental	 Research	 Division	 ERDDAP	 server	 hosts	

EcoCast	 products	 in	 multiple	 georeferenced	 formats	 for	 public	
download	and	analysis	 (https://coastwatch.pfeg.noaa.gov/erddap/
griddap/ecocast.html).	More	information	on	dissemination	pathway	
access	and	metadata	can	be	found	on	the	EcoCast	website:	https://
coastwatch.pfeg.noaa.gov/ecocast/.

3.3.4 | Stage 4: Automation

To	 automate	 the	 operationalization	workflow,	 each	 r	 script	 in	 the	
Acquisition,	Prediction	and	Dissemination	 stages	was	written	as	 a	
function	that	initialized	itself	at	the	end	of	the	script.	Scheduling	of	
the	execution	of	each	function	was	carried	out	within	a	shell	script	
using	the	cron	utility.	The	functions	were	scheduled	to	run	each	day	
at	the	top	of	every	hour	between	8	am	and	3	pm	to	accommodate	
environmental	data	latency	(see	progression	of	scripts	in	Appendix	
S2:	Figure	S1).	Each	script	writes	errors	and	status	reports	to	a	daily	
log	 file.	 The	 EcoCast	 tool	 currently	 resides	 on	 the	 same	 network	
node	as	the	environmental	data,	which	has	reduced	the	 latency	of	
environmental	data	during	the	Acquisition	stage.

4  | DISCUSSION

This	 study	has	presented	a	 trans-	disciplinary	 four-	stage,	 start-	to-	finish	
framework	for	operationalizing	DM	tools,	and	provided	examples	from	
multiple	environmental	domains	to	explore	trade-	offs	and	practical	con-
siderations	at	each	stage.	Although	specifics	will	vary	between	tools,	the	

F IGURE  3 EcoCast	tool	sensitivity	to	scenarios	of	missing	data.	Plots	show	the	mean	per	pixel	difference	between	contingency	
and	official	products.	The	plot	on	the	right	shows	the	same	data	but	on	a	different	y-	axis	scale.	Grey	bars	representing	the	leave-	one-	
out	response	are	independent	of	the	x-	axis.	Error	bars	indicate	±	1SD.	EKE:	eddy	kinetic	energy;	CHLA:	chlorophyll	a;	SST:	sea	surface	
temperature,	SLA:	sea	level	anomaly

http://oceanview.pfeg.noaa.gov/ecocast/
https://coastwatch.pfeg.noaa.gov/ecocast/explorer.html
https://coastwatch.pfeg.noaa.gov/ecocast/explorer.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/ecocast.html
https://coastwatch.pfeg.noaa.gov/erddap/griddap/ecocast.html
https://coastwatch.pfeg.noaa.gov/ecocast/
https://coastwatch.pfeg.noaa.gov/ecocast/
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generalized	framework	can	serve	as	a	guide	to	help	developers	foresee	
and	 assemble	 tool	 components.	 Using	 a	 fisheries	 sustainability	 tool—
EcoCast—as	a	case	study,	we	demonstrated	an	applied	example	of	the	
methodological	approach	for	each	operationalization	stage,	and	a	sensi-
tivity	analysis	to	guide	the	tool’s	handling	of	missing	data.	The	sensitivity	
of	DM	tools	to	missing	or	sparse	BEES	data	is	infrequently	evaluated,	and	
we	argue	that	these	sensitivity	analyses	are	critical	for	tools	that	use	ob-
served	data	in	order	to	minimize	errors	in	management	recommendations.

When	evaluating	tool	sensitivity,	development	teams	should	con-
sider	several	caveats.	First,	for	tools	that	use	statistical	models	or	al-
gorithms,	 acceptable	operational	 responses	 in	 the	 contingency	plan	
will	be	dictated	by	model	or	algorithm	type.	For	example,	some	model	
types	are	able	to	predict	over	missing	data	 (e.g.,	boosted	regression	
trees,	MaxEnt,	Phillips,	Anderson,	&	Schapire,	2006)	making	dropping	
out	data	a	viable	response;	however,	other	types	such	as	generalized	
linear	models	and	generalized	additive	models	cannot.	Second,	results	
are	likely	to	be	influenced	by	the	spatial	resolution	of	the	BEES	data	
used,	with	finer	scale	data	likely	to	be	more	sensitive	to	latency	due	to	
an	enhanced	ability	to	resolve	ephemeral	features.	And	lastly,	errors	
introduced	in	the	contingency	plan	need	to	be	consistent	with	accept-
able	errors	in	the	management	recommendation.	For	example,	while	it	
might	be	acceptable	for	fishers	to	respond	to	day	old	data	when	decid-
ing	where	to	fish,	it	would	be	inadvisable	for	homeowners	to	respond	
to	day	old	data	in	terms	of	deciding	where	to	evacuate	from	fires.

To	 ensure	DM	 tools	 are	 able	 to	meet	 the	 accuracy,	 precision,	
and	delivery	needs	of	their	end-	users,	they	should	be	operational-
ized	 in	direct	consultation	with	 industry	 stakeholders	and	manag-
ers	(Eveson	et	al.,	2015;	Spillman	&	Hobday,	2014).	Workshops	and	
focus	 groups	 with	 end-	users	 can	 help	 tool	 developers	 determine	
the	 most	 suitable	 format,	 temporal	 frequency,	 and	 dissemination	
pathway	 for	 final	 products.	 Regular	meetings	 also	 help	 build	 and	
maintain	working	relationships	between	parties,	creating	communi-
cation	lines	for	discussing	future	tool	developments,	troubleshoot-
ing	 issues,	or	ground-	truthing	management	recommendations	 (see	
an	example	of	a	ground-	truthing	programme	in	Turner	et	al.	2017).	
Additionally,	bottom-	up	stakeholder-	driven	approaches	(such	as	the	
DM	tools	described	in	O’Keefe	&	DeCelles	2013	and	Eveson	et	al.	
2015)	 are	 widely	 recognized	 as	 critical	 to	 achieving	management	
goals	 such	 as	 stakeholder	 compliance	 and	 participation	 (Dalton,	
Forrester,	 &	 Pollnac,	 2012;	 Halvorsen,	 2003;	 Oyanedel,	 Marín,	
Castilla,	&	Gelcich,	2016).

For	DM	tools	that	use	statistical	models	or	algorithms	to	predict	tar-
get	feature	attributes	 (e.g.,	Coral	Reef	Watch,	Table	1),	predictive	skill	
should	be	evaluated.	These	types	of	tools	calculate	management	recom-
mendations	by	extrapolating	beyond	observed	BEES	data,	and	therefore	
ground-	truthing	predictions	is	critical	to	ensuring	management	recom-
mendations	are	appropriate.	This	is	in	contrast	with	DM	tools	that	ag-
gregate	and	summarize	BEES	data	(e.g.,	WaterWatch,	MediSys	Table	1),	
which	do	not	introduce	extrapolative	errors.	Tool	predictive	ability	can	
be	evaluated	using	hindcast	(i.e.,	historical)	analyses	that	test	tool	ability	
to	predict	appropriate	management	recommendations	to	known	histor-
ical	events.	For	example,	 the	National	Hurricane	Center	evaluates	 its	
annual	 forecast	error	against	observed	hurricane	tracks	 (Cangialosi	&	

Franklin,	2011),	and	the	MODIS	fire	products	used	by	the	Active	Fire	
Mapping	Program	are	evaluated	against	known	fire	events	(Morisette,	
Privette,	&	Justice,	2002).	Discrepancies	between	the	predicted	man-
agement	response	and	known	historical	events	can	be	used	to	refine	
the	underlying	models	and	algorithms,	or	presented	alongside	products	
to	 improve	decision-	making,	 e.g.,	 “the	 cone	of	 uncertainty”	 displayed	
around	hurricane	forecast	tracks	(Cangialosi	&	Franklin,	2011).

To	 simplify	 our	 framework,	 we	 include	 only	 operationalization	
components	 that	 occur	 during	 the	 initial	 implementation;	 howeve,	
DM	tools	require	ongoing	upkeep,	and	it	is	important	that	tools	have	
the	necessary	 resources	 for	maintenance.	Both	observed	and	mod-
elled	 BEES	 data	 dissemination	 streams	 will	 require	 funding	 to	 be	
produced	 into	the	future.	Code	will	break	as	upgrades	and	package	
depreciations	cause	changes	to	syntax.	Additionally,	statistical	models	
and	algorithms	are	 subject	 to	 concerns	of	non-	stationarity	 and	 can	
introduce	extrapolation	errors	if	the	BEES	conditions	over	which	they	
are	predicted	fall	outside	the	range	of	BEES	data	on	which	they	were	
trained.	Ongoing	testing	of	predictive	skill	using	newly	collected	data	
will	be	critical	to	ensure	relationships	between	BEES	data	and	target	
features	 have	 not	 changed,	 and	 that	 predictions	 are	 still	within	 ac-
ceptable	accuracy	limits.	Operationalized	DM	tools	require	personnel	
and	funding	to	address	these	maintenance	items,	and	their	long-	term	
continuance	will	require	 institutional	 investment.	To	help	secure	re-
sources,	 it	will	 be	 important	 for	 national	 governments	 and	 interna-
tional	treaties	(e.g.,	The	Convention	on	Biological	Diversity,	Balmford	
et	al.,	2005;	The	World	Parks	Congress	Promise	of	Sydney,	Andersen	
&	Enkerlin-	Hoeflich,	2015)	to	recognize	DM	tools	as	a	core	part	of	the	
management	toolbox.	It	is	also	important	that	resource	management	
and	Earth	Observation	remain	line	items	in	federal	budgets.	DM	tools	
help	individuals	and	governing	bodies	save	money	(e.g.,	by	increasing	
fisheries	sustainability	or	reducing	property	loss),	and	feedback	mech-
anisms	could	be	put	in	place	to	quantify	and	recycle	avoided	monetary	
losses	back	into	tool	maintenance.

5  | CONCLUSIONS

Dynamic	management	is	emerging	as	a	solution	to	some	of	the	draw-
backs	of	static	management,	such	as	inflexibility	to	climate	variabil-
ity	and	change,	and	 larger	area	requirements	to	meet	management	
objectives	 (Dunn	et	al.,	 2016;	Spillman	&	Hobday,	2014).	DM	 tools	
are	 applicable	 to	 a	wide	 range	of	management	purposes,	 including	
natural	 disaster	 preparedness,	 resource	 management,	 and	 human	
health,	and	to	a	wide	range	of	natural	systems.	Because	DM	tool	op-
erationalization	is	relatively	complex	compared	to	that	of	static	tools,	
it	will	be	important	for	future	studies	to	make	their	workflows	trans-
parent	to	serve	as	guides	for	subsequent	tools.	As	a	starting	point,	
we	 have	 presented	 a	 reproducible	 and	 transparent	 operationaliza-
tion	framework,	standardized	across	marine,	 freshwater,	 terrestrial,	
and	atmospheric	DM	applications.	While	DM	operational	challenges	
might	seem	prohibitive,	they	should	be	viewed	as	stepping	stones—
rather	 than	barriers—to	widespread	DM	implementation.	The	prac-
tice	 of	 static	 management	 has	 been	 progressively	 redefined	 and	



10  |    Journal of Applied Ecology WELCH Et aL.

refined	over	the	past	150	years	(Margules	&	Pressey,	2000;	Pressey,	
Visconti,	&	Ferraro,	2015;	Runte,	1997),	and	 it	would	be	myopic	to	
not	expect	a	similar	maturation	process	for	DM.	In	a	fundamentally	
dynamic	world,	 it	 is	 important	that	we	continue	to	allocate	techno-
logical,	 scientific,	 and	monetary	 resources	 to	develop	management	
solutions	 that	 accommodate	 biological,	 environmental,	 economic,	
and	social	variability.
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