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Species distribution models (SDMs) have become key tools for describing and predicting

species habitats. In the marine domain, environmental data used in modeling species

distributions are often remotely sensed, and as such have limited capacity for interpreting

the vertical structure of the water column, or are sampled in situ, offering minimal spatial

and temporal coverage. Advances in ocean models have improved our capacity to

explore subsurface ocean features, yet there has been limited integration of such features

in SDMs. Using output from a data-assimilative configuration of the Regional Ocean

Modeling System, we examine the effect of including dynamic subsurface variables

in SDMs to describe the habitats of four pelagic predators in the California Current

System (swordfish Xiphias gladius, blue sharks Prionace glauca, common thresher

sharks Alopias vulpinus, and shortfin mako sharks Isurus oxyrinchus). Species data

were obtained from the California Drift Gillnet observer program (1997–2017). We used

boosted regression trees to explore the incremental improvement enabled by dynamic

subsurface variables that quantify the structure and stability of the water column:

isothermal layer depth and bulk buoyancy frequency. The inclusion of these dynamic

subsurface variables significantly improved model explanatory power for most species.

Model predictive performance also significantly improved, but only for species that had

strong affiliations with dynamic variables (swordfish and shortfin mako sharks) rather than

static variables (blue sharks and common thresher sharks). Geospatial predictions for all

species showed the integration of isothermal layer depth and bulk buoyancy frequency

contributed value at the mesoscale level (<100 km) and varied spatially throughout the

study domain. These results highlight the utility of including dynamic subsurface variables

in SDM development and support the continuing ecological use of biophysical output

from ocean circulation models.
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INTRODUCTION

Species distribution models (SDMs) have become a common
method to study species spatial ecology, often to support
environmental management and conservation (Robinson
et al., 2011, 2017). Building SDMs and exploring resultant
environmental drivers requires data on species’ presence
and corresponding environmental information (Elith and
Leathwick, 2009; Robinson et al., 2017). In the marine realm,
such corresponding environmental information can be obtained
from satellite platforms, in situ sources (i.e., data loggers,
moorings, under sea vehicles, surveys), and ocean circulation
models. Data-assimilative ocean circulation models incorporate
available environmental information from satellite and in situ
platforms while also adding value in the form of increased
spatial and temporal data resolution and elimination of data
gaps. Importantly, ocean circulation models can also provide
spatiotemporal resolution of the vertical structure of the ocean.
These benefits have resulted in the increasing use of ocean
circulation models in SDM development (Becker et al., 2016;
Scales et al., 2017b).

SDM applications are often used to understand and predict
the horizontal and/or vertical spatiotemporal distribution of
species (Guisan and Thuiller, 2005; Elith and Leathwick, 2009;
Robinson et al., 2017). For marine species, there can often be
separation in temporal scales when comparing horizontal and
vertical distributions. For example, vertical distribution often
reflects behavior on short temporal scales (e.g., diving and
foraging occur from minutes to hours), whereas changes in
horizontal distributions generally reflect longer temporal scales
(e.g., habitat use and migratory behavior occurring over days to
months) (Block et al., 2011; Bestley et al., 2015). These vertical
and horizontal movements are often linked, and thus integrating
both horizontal and vertical dimensions in SDMs could result in
model improvement provided that appropriate data are available.
The availability of subsurface data from ocean circulationmodels,
compels the need to explore what, if any, benefit comes from
integrating vertical biophysical features in SDMs.

Species occurrence data appropriate for use in SDM
development can encompass a variety of spatiotemporal scales
(Elith et al., 2006). Many sources of marine species occurrence
data are not vertically informed, such as fisheries catch data where
there is no available information of the depth of catch (Brodie
et al., 2015). Despite this data limitation, subsurface metrics
that characterize the physical structure of the water column on
a horizontal plane can be informative in SDMs. For example,
previous studies have used the climatology of the mixed layer
depth as a variable (e.g., Dell et al., 2011; Carlisle et al., 2017).
Mixed layer depth is an important characteristic of the vertical
water column structure (typically 25–200m depth; Kara et al.,
2003) that effects the vertical distribution of nutrients, plankton
and corresponding higher trophic levels (Huisman et al., 2006;
Behrenfeld and Boss, 2014; Schroeder et al., 2014). The use of
climatological subsurface data is common but does not reflect
the contemporaneous conditions animals experience and instead
indicates the long-term state of the environment (Mannocci
et al., 2017). Ocean circulation models, in contrast, can provide

subsurface biophysical data at scales contemporaneous to species
occurrence data (Scales et al., 2017b).

The goal of this study is to explore the effect of integrating
dynamic, model-derived, subsurface variables into SDMs, and
the persistence of effect across species. We do this by comparing
three SDM simulations: (1) models that only use static variables;
(2) models that use a combination of static and dynamic variables
but no vertical variables; and (3) models that use a combination
of static and dynamic variables, including vertical variables. Here,
simulation 1 is not intended as an appropriate option for building
a SDM, but rather provides a null model to comparatively
assess the value of no dynamic environmental information,
while simulation 2 assesses the added value of dynamic surface
variables, and finally simulation 3 assesses the added value from
dynamic subsurface variables. We use presence-absence catch
data for four comparative species that co-exist in the California
Current study region: swordfish Xiphias gladius, blue sharks
Prionace glauca, common thresher sharks Alopias vulpinus, and
shortfin mako sharks Isurus oxyrinchus. The use of four species
allows for a broader comparison of the effect of vertical variables
in SDMs. Based on existing knowledge of distribution, behavior,
diet, and physiology, these species are known to differ in their
horizontal and vertical habitat use (Table 1). All four study
species exhibit some degree of diel vertical migration (Table 1),
a behavioral phenomenon in pelagic ecosystems where oceanic
organisms ascend to the photic zone during night and descend
to mesopelagic depths (typically 200–1,000m) during the day
(Robison, 2004). As a result of this daily migration, it is likely
that subsurface variables will be important in structuring the
horizontal distribution of the study species. We explore the
effect of two subsurface variables that quantify the structure and
stability of the water column, isothermal layer depth and bulk
buoyancy frequency. Given the role subsurface features have
on structuring ecosystems, understanding the contribution of
subsurface variables on SDM power and performance of pelagic
species can further demonstrate the utility of SDMs in support of
marine conservation and spatial planning efforts.

METHODS

Species and Environmental Data
Species occurrence data were obtained from the NOAA fisheries
observer program from the California drift gillnet fishery,
which operates at night along the US West Coast (Figure 1).
This fishery targets swordfish, but also retains other species
including common thresher sharks and shortfin mako sharks.
Catch of all species, including bycaught species such as blue
sharks, are recorded in the observer program which operates
at ∼15% coverage across the fishery. The catch data contained
the presence or absence of an animal in each set, with species
size data not universally available for analysis. The data were
temporally limited to 1997 through 2017 to match the availability
of environmental data, namely satellite-derived chlorophyll-a
(Table 1). All analyses described below were performed using R
statistical computing (R Core Team, 2017).

A total of 16 environmental variables were available for
inclusion in species distribution models, which included three
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TABLE 1 | Ecological comparison of swordfish, blue sharks, common thresher sharks, and shortfin mako sharks based on published sources.

Metric Swordfish Blue sharks Common thresher

sharks

Shortfin mako sharks

Stock status Not overfished. Overfishing is not

occurring in Western and Central

Pacific, but overfishing is occurring in

Eastern Pacifica,b

Not overfished and

overfishing is not

occurringb,k

Not overfished and

overfishing is not

occurringp

Unknownu

IUCN conservation status Least concern Near threatened Vulnerable Vulnerable

Typical day depth use (m) 107–760c,d,e 120l 8–24q,r 120l

Typical night depth use (m) 8–31c,d 60l 6–12q,r 100l

Maximum depth potential (m) 1,200d,f 350l 405q 880v

Diel vertical behavior (day deep and night shallow) Yesc,d,e Yesl Yesq,r Not always clear but

typically yesl,v

Regional Endothermy Yesg No Yess,t Yesw

Diet Mesopelagic and pelagic teleosts,

and cephalopodsh,i,j
Cephalopods, pelagic

teleosts, and

myctophidsm,n

Coastal pelagic

telesotsm
Cephalopods, pelagic

teleostsm

Temperature range (◦C) 3–29e 9–27l,o 9–21q 4–25l,v

Metrics of comparison include stock status, International Union for Conservation of Nature (IUCN) global conservation status, typical depth occupied, diel vertical behavior, endothermy,

diet, and observed temperature range. Where possible, information specific to the California study region was used. IUCN status accesses The IUCN Red List of Threatened Species.

Version 2017-3. <www.iucnredlist.org>. Downloaded on 05 January 2018. a ISC (2014b); bNOAA (2017); cSepulveda et al. (2010); dSepulveda et al. (2018); eAbecassis et al. (2012);
fDewar et al. (2011); gDe Metrio et al. (1997); hMarkaida and Sosa-Nishizaki (1998); iMarkaida and Hochberg (2005); jYoung et al. (2006); k ISC (2014a); lMusyl et al. (2011); mPreti

et al. (2012); nKubodera et al. (2007); oMaxwell et al. (in review); pTeo et al. (2016); qHeberer et al. (2010); rCartamil et al. (2011); sBernal and Sepulveda (2005); tSyme and Shadwick

(2011); u ISC (2015); vAbascal et al. (2011); wBernal et al. (2001).

static variables, 11 dynamic surface variables, and two dynamic
subsurface variables (Table 2). Three static variables included
bathymetry (z; ETOPO1 obtained from https://www.ngdc.
noaa.gov/mgg/global/global.html, interpolated to 0.1◦), rugosity
(z_sd; calculated as the standard deviation of z over a 0.3◦

square), and lunar illumination from the “lunar” package in
R. Lunar illumination was included in the static grouping as
it does not require observation due to its definitive cyclical
nature. Lunar illumination was chosen as the fishery gear is
deployed at night and illumination is known to affect the
vertical distribution of swordfish (Sepulveda et al., 2010; Lerner
et al., 2012; Scales et al., 2017b). The majority of dynamic
environmental data was sourced from daily fields of an ocean
circulation model, namely a data assimilative configuration of
the Regional Ocean Modeling System (ROMS) that covers the
California Current System from 30 to 48 ◦N and from the
coast to 134 ◦W at 0.1◦ (∼10 km) horizontal resolution (http://
oceanmodeling.ucsc.edu/ccsnrt version 2016a; Neveu et al.,
2016). The ROMS 0.1◦ spatial resolution is considered sufficient
for habitat modeling as this spatial scale combined with a fine
temporal scale (daily) acts to minimize bias in similar species
distribution models (Scales et al., 2017a). Vertical structure in
the ROMS model is resolved by 42 terrain-following vertical
levels (Veneziani et al., 2009). Importantly, the ROMS model
employed here assimilates available data from satellites and
in situ platforms (e.g., ships, moorings, buoys) to provide
environmental information that is better than either the model
or the observations in isolation. The temporal scale of our study
spanned two ROMS iterations, a historical re-analysis (1980–
2010; Neveu et al., 2016) and a near real-time product (2011-
present) and as such all ROMS variables were assessed for

consistency across the two temporal periods using a time-series
analysis.

Eleven dynamic surface ROMS variables chosen included
sea surface temperature (SST) and its standard deviation
(SST_sd; calculated over a 0.3◦ square), sea surface height
(SSH) and its standard deviation (SSH_sd; calculated over a
0.3◦ square), surface eastward and northward velocity (su; sv),
surface eastward and northward wind stress (sustr; svstr), wind
stress curl, and eddy kinetic energy (EKE) (Table 2). We also
included chlorophyll-a as a dynamic surface variable, but as
the assimilative ROMS model is purely physical, we used a
combination of satellite-derived products (SeaWiFS and Aqua
MODIS, distributed by NASA and obtained from SWFSC
Environmental Research Division’s ERDDAP; Simons, 2017).
Chlorophyll-a and EKE were highly right skewed and were loge
transformed prior to analysis.

Dynamic subsurface ROMS variables included isothermal
layer depth (ILD) and bulk buoyancy frequency (BBV, also
known as Brunt-Väisälä frequency). Both variables provide
indices of water column structure, respectively the depth of
surface mixing and degree of stratification in the upper water
column. ILD (m) was calculated as the depth corresponding to a
0.5◦C temperature difference relative to sea surface temperature
(Monterey and Levitus, 1997). Daily mean surface temperature
was used as a reference point because the typical 10m reference
point is not suitable for regions with strong upwelling, like the
California Current (de BoyerMontégut et al., 2004). ILD provides
a daily horizontal field (0.1◦ resolution) comparable to dynamic
surface variables (Scales et al., 2017b). BBV (s−1) offers a measure
of the upper water column stability and was averaged over the
upper 200m of the water column to produce a daily horizontal
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FIGURE 1 | Study area off the US West Coast indicating the bathymetry (m;

color scale) and location of fishing sets during 1997–2017 (dots) within the

Regional Ocean Modeling System (ROMS) domain (inset). Fishing sets

locations are aggregated to the nearest 0.5◦, and dot size indicates relative

frequency of sets. The 1,000 and 2,000m bathymetric contours are shown.

field (0.1◦ resolution), where higher BBV values indicate a more
stable water column. In areas <200m deep, BBV was averaged
over the entire water column. The two-dimensional structure
of ILD and BBV described water column properties best suited
SDM development as the catch data used here were not vertically
informed (i.e., depth of catch).

Species Distribution Models
Three species distribution models were built for each species
(swordfish, blue sharks, common thresher sharks, and shortfin
mako sharks) using fishery catch data. The probability of
species presence was modeled as a function of environmental
variables (described above) using a boosted regression tree
(BRT) framework from the “dismo” R package (Elith et al.,
2008). Three combinations of environmental variables were
used to explore the importance of dynamic vertical variables
on models. Simulation 1: static only variables (z, z_sd, lunar);
simulation 2: static and dynamic surface variables with no vertical
variables; simulation 3: models with static and dynamic surface
variables and vertical variables (Table 2). Co-linearity between
environmental variables was not a prohibitive issue as the BRT
framework automatically handles any co-linearity effects (Elith

et al., 2008). All BRT models were built using a Bernoulli family
appropriate to the response variable of presence (1) and absence
(0). The BRTs had a learning rate of 0.01, a tree complexity of 3,
and a bag fraction of 0.6 (Elith et al., 2008). The resultant species
distribution models describe the probability of species presence,
here termed “habitat suitability” due to our use of fisheries catch
data as a response variable.

Species distribution models were evaluated using explained
deviance, Area Under the receiver operating Curve (AUC),
and true skill statistic (TSS). Explained deviance (%) gives an
indication of how well the model explains the data, while AUC
and TSS assess the predictive performance of models on new
data. Explained deviance was calculated as an average of 50
model iterations. This evaluation approach is possible because
the bag fraction (0.6) of each model ensures a random selection
of data to each tree, resulting in each model iteration being
unique. The AUC and TSS were calculated as the average of 50
model iterations, where each iteration was built using 75% of the
data and assessed against the remaining 25% of the data. This
approach for model evaluation was done for each species (n= 4)
and each model simulation (n = 3) and used a learning rate
of 0.001 to improve convergence on the reduced dataset (75%).
Differences in evaluation metrics between model simulations
were assessed for significance using ANOVA and a Tukey Honest
Significance Differences (HSD) post-hoc test (Fournier et al.,
2017) in the R “stats” package (R Core Team, 2017).

Final SDMs were used to predict and visualize species habitat
suitability on two example days, 1st December 2012 and 2015.
December was chosen as fishery catch peaks during this month
(Urbisci et al., 2016). 2012 represents a neutral year in the
California Current ecosystem, with no strong ENSO influences
(Bjorkstedt et al., 2012), while 2015 was a year when the
California Current was strongly affected by the combination of
an El Niño and pre-existing warm anomalies (Jacox et al., 2016).
Habitat suitability predictions weremade for each species (n= 4),
and formodel simulations 2 and 3 (dynamic simulations with and
without vertical variables). The differences in habitat suitability
between simulations 2 and 3 were calculated to visualize the effect
of adding vertical variables into models.

RESULTS

Species catch data along the California coast were not evenly
distributed, with the majority of effort concentrated in the
southern region (Figure 1). A total of 4,719 drift gillnet sets
were used in the analysis. There were more swordfish present
(n= 2986) than absent in these sets. In contrast, there were more
shark species absent than present (blue sharks n= 2163; common
thresher sharks n= 1074; shortfin mako sharks n= 2048) in sets.

Species distribution models revealed complex relationships
among species presence and environmental variables. The
relative importance of each variable varied among species, but
the dynamic subsurface variables (BBV and ILD) ranked in the
top six variables across all species (Figure 2; Table S1). The
contribution of BBV and ILDwasmost prevalent in the swordfish
model relative to the shark models (Figure 2).
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TABLE 2 | Summary of 16 environmental variables included in species distribution models.

Variable name Acronym Unit Source Simulation

Bathymetry z m ETOPO1 1, 2, 3

Rugosity z_sd z derived from ETOPO1 1, 2, 3

Lunar illumination lunar % Lunillium R package 1, 2, 3

Sea surface temperature SST ◦C ROMS 2, 3

Sea surface height SSH m ROMS 2, 3

Surface eastward velocity su m s−1 ROMS 2, 3

Surface eastward wind stress sustr m s−1 ROMS 2, 3

Surface northward velocity sv m s−1 ROMS 2, 3

Surface northward wind stress svstr m s−1 ROMS 2, 3

Wind stress curl curl N m−2 ROMS 2, 3

SD of sea surface temperature SST_sd ◦C Derived from ROMS 2, 3

SD of sea surface height SSH_sd m Derived from ROMS 2, 3

Log eddy kinetic energy EKE m2 s−2 Derived from ROMS 2, 3

Log chlorophyll-a chl-a mg m−3 SeaWiFS & Aqua MODIS 2, 3

Isothermal layer depth ILD m Derived from ROMS 3

Bulk Brunt-Väisälä frequency BBV s−1 Derived from ROMS 3

Simulation number indicates which variables are included in each of the three model simulations. ROMS data obtained from http://oceanmodeling.ucsc.edu/ccsnrt version 2016a

(Neveu et al., 2016). ETOPO1 obtained from https://www.ngdc.noaa.gov/mgg/global/global.html. Chlorophyll-a data obtained from SeaWiFS and Aqua MODIS, distributed by NASA

and obtained from SWFSC Environmental Research Division’s ERDDAP (Simons, 2017).

Variable response curves revealed how the probability of
species presence was influenced by each variable (Figure 3;
Figure S1). For brevity, we describe results for the two vertical
variables (ILD, BBV; Figure 3), with the remaining variable
response curves provided in the Supplementary Material (Figure
S1). For swordfish, the probability of presence had a positive
correlation with ILD (peaking 40–120m) and a non-monotonic
correlation with BBV (preference between 0.009 and 0.013
s−1). For blue sharks, the probability of presence had a
positive correlation with ILD (peaking 40–120m) and a positive
correlation with BBV (plateauing at 0.009 s−1). For shortfinmako
sharks, the probability of presence had a positive correlation with
ILD (less steep slope between 20 and 120m) and a negative
correlation with BBV (plateauing at 0.009 s−1). For common
thresher sharks, the probability of presence had a positive
correlation with ILD (sharp increase>70m) and a complex non-
linear correlation with BBV (two troughs at 0.009 and 0.013 s−1).

The addition of dynamic surface and subsurface variables
(simulations 2 and 3) to the static model (simulation 1)
significantly improved model explanatory power and predictive
performance across all species (Figure 4; Table 3; p < 0.001).
Furthermore, the addition of vertical variables (simulation
3) to a non-vertical variable model (simulation 2) typically
increased model explanatory power and predictive performance
(Figure 4; Table 3). However, post-hoc analyses revealed the
improvement in predictive performance between simulation
2 and 3 was not statistically significant for species with
strong responses to bathymetry (blue sharks and common
thresher sharks; Figure 4). Further, blue sharks were the
only species where adding vertical variables (simulation 3)
did not significantly improve explained deviance (Figure 4;
Table 3). The addition of vertical variables (simulation 3) to

a non-vertical variable model (simulation 2) also resulted
in changes to dynamic variable response curves (Figure
S2).

Predicted species’ habitat suitability for 1st December 2012
and 2015 revealed spatial differences among species, with
common thresher shark habitat predicted more suitable inshore
of the 1,000m isobath and the other three species habitat
predicted to be more suitable offshore of the 1,000m isobath
and in the Southern California Bight (Figure 5; Figure S3). The
effect of adding of ILD and BBV to species distribution models
was evident in each species spatial prediction (Figure 5; Figure
S3). Differences in the predicted habitat suitability between
simulations 2 and 3 indicated that the vertical variables ILD
and BBV contributed to model predictions primarily at a
sub-mesoscale level (<100 km). Comparison of species spatial
predictions between a neutral year (2012; Figure 5) and an El
Niño year (2015; Figure S3) revealed that during 2015 all species
predicted habitat expanded, and the contribution of ILD and
BBV was more prominent in the swordfish and blue shark
models.

DISCUSSION

Species distribution models (SDMs) are increasingly used to
characterize and understand the distributions of marine species.
The prevalence of vertical movement behavior in pelagic top
predators substantiates the importance of integrating vertical
water column structure into SDMs. Using evaluation metrics
for SDMs, we showed that integrating dynamic subsurface
variables increased explanatory power across all species models,
although the degree of improvement to model predictive
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FIGURE 2 | Spider plots of the relative influence (%) of each environmental variable within species distribution models: swordfish (yellow); blue sharks (blue); common

thresher sharks (green); shortfin mako sharks (red). Variable acronyms are described in Table 2.

FIGURE 3 | Species partial response curves for two example variables, Isothermal Layer Depth and Bulk Brunt-Väisälä frequency. Species indicated by color:

swordfish (yellow), blue sharks (blue), common thresher sharks (green), and shortfin mako sharks (red). Lines use a loess smoother fitted to the boosted regression

tree response curves.
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FIGURE 4 | Mean ± S.D. (A) deviance explained; (B) AUC; and (C) TSS for three model simulations indicated numerically: simulation 1 (static variables only);

simulation 2 (static and dynamic surface variables); and simulation 3 (static and dynamic surface and subsurface variables). Species’ model simulations were run 50

times to generate mean ± S.D, with significance denoted by letters (ANOVA and Tukey HSD, p < 0.05). Models for each species are shown: swordfish (yellow), blue

sharks (blue), common thresher sharks (green), and shortfin mako sharks (red). Letters are only comparable among simulations of the same species.
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TABLE 3 | ANOVA and Tukey HSD post-hoc results from species distribution model simulation comparison.

Simulation 1 (a) Simulation 2 (b) Simulation 3 (c) F(2, 27) p Post-hoc

EXPLAINED DEVIANCE

Swordfish 7.11 ± 0.05 23.49 ± 1.35 26.76 ± 1.28 4809 <0.0001 a<b<c

Blue sharks 13.45 ± 0.08 28.46 ± 1.11 28.63 ± 1.05 4868 <0.0001 a<b=c

Common thresher sharks 4.39 ± 0.06 23.29 ± 1.25 25.64 ± 1.34 6021 <0.0001 a<b<c

Shortfin mako sharks 2.55 ± 0.06 17.55 ± 0.98 21.32 ± 1.22 6008 <0.0001 a<b<c

AUC

Swordfish 0.67 ± 0.02 0.79 ± 0.02 0.81 ± 0.15 1016 <0.0001 a<b<c

Blue sharks 0.74 ± 0.01 0.83 ± 0.01 0.83 ± 0.02 589.9 <0.0001 a<b=c

Common thresher sharks 0.64 ± 0.02 0.81 ± 0.01 0.81 ± 0.02 1707 <0.0001 a<b=c

Shortfin mako sharks 0.62 ± 0.01 0.75 ± 0.02 0.78 ± 0.02 1449 <0.0001 a<b<c

TSS

Swordfish 0.26 ± 0.03 0.46 ± 0.03 0.48 ± 0.03 842 <0.0001 a<b<c

Blue sharks 0.38 ± 0.02 0.51 ± 0.03 0.51 ± 0.03 361.8 <0.0001 a<b=c

Common thresher sharks 0.21 ± 0.02 0.48 ± 0.03 0.48 ± 0.03 1500 <0.0001 a<b=c

Shortfin mako sharks 0.19 ± 0.02 0.39 ± 0.03 0.44 ± 0.04 991 <0.0001 a<b<c

Values are the mean± SD explained deviance (%), AUC, and TSS generated from 50 model iterations for simulation 1 (static variables), simulation 2 (no vertical variables), and simulation

3 (including vertical variables). ANOVA F and p-values for the main effect of simulation are shown, with the post-hoc results denoted by letters.

performance was species-dependent. Inter-specific variability
in results is likely a result of individual species ecology,
where species with strong correlations with static variables
were less affected by the addition of dynamic subsurface
variables (e.g., blue sharks). The positive effect of including
dynamic subsurface variables supports their utility in marine
SDM development and encourages further exploration of the
vertical dimension to species’ horizontal distributions and
movements. The use of dynamic subsurface variables in SDM
development provided further understanding of the processes
driving species distributions, which has clear implications
for the ongoing management and conservation of marine
megafauna.

Species Ecological Responses to Variables
The SDMs built here reveal the complex responses four top
predators have to static and dynamic environmental variables.
The wide range of variables used in model development
represent direct (e.g., temperature-dependent physiological
effects; Altringham and Block, 1997; Brown, 2004) and
indirect (e.g., chlorophyll-a as an indicator of productivity;
Armstrong et al., 1995; Polovina et al., 2008) effects on
the distribution of these top predators. Here, the dynamic
subsurface variables included in SDMs, namely bulk buoyancy
frequency (BBV) and isothermal layer depth (ILD), likely
have direct and indirect effects on top predator distribution
and therefore influence their susceptibility to catch (see
below). These variables characterized subsurface water properties
on a horizontal plane, and in doing so indicated relative
temperature (direct effects) and availability of prey fields (indirect
effects).

Bulk buoyancy frequency (BBV) quantifies water column
stability, where high BBV values reflect a more stable water
column. Increased stability (a more stratified water column)

acts as a barrier for upward nutrient flux into the photic zone,
affecting the productivity and distribution of prey fields (Haug
et al., 1986; Susini-Ribeiro et al., 2013; Behrenfeld and Boss,
2014). Here, top predator response to BBV differs among species,
with swordfish, blue sharks, and shortfin mako sharks showing
an increased probability of occurrence in areas with intermediate
BBV values. Lower BBV values correspond to waters that are
highly mixed and less stable, typical of upwelled waters that
are cold and oxygen poor (Grantham et al., 2004). While these
species are physiologically and biomechanically equipped for
foraging in cold and hypoxic waters (Table 1; Dickson and
Graham, 2004;Wegner et al., 2010; Abecassis et al., 2012), surface
waters support recovery from deep vertical dives by allowing
thermal regulation of body temperature and a reduction of
oxygen debt (Dagorn et al., 2000; Dewar et al., 2011). As a
result, intermediate BBV levels may provide a middle ground
between prey availability (low BBV values) and suitability of
surface waters for recovering from vertical movements (high
BBV values). In contrast, common thresher sharks preferred
extreme BBV values (low and high), which likely reflects
their predominantly coastal distribution (shallow bathymetry
preference) as such areas can have the most extreme BBV values
(Figure 5).

Isothermal layer depth (ILD) was an important variable
in the SDMs, and its relative influence was similar among
species. Isothermal layer depth is a proxy for mixed layer depth,
and indicates the depth where physical water properties (i.e.,
temperature, salinity, nutrients, oxygen) change dramatically
(Robison, 2004). All four species showed a preference for
waters with deeper ILDs which indicates a thick homogenous
surface layer in the epipelagic zone where temperature and
oxygen are higher. This surface layer may provide a thermal
and oxygen refuge for pelagic predators (Prince and Goodyear,
2006; Dewar et al., 2011; Carlisle et al., 2017), as many pelagic

Frontiers in Marine Science | www.frontiersin.org 8 June 2018 | Volume 5 | Article 219

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Brodie et al. Subsurface Metrics Improve Habitat Models

FIGURE 5 | Predicted habitat suitability for each species for an example day, 1 December 2012. The first row shows predicted habitats using simulation 2 (static and

dynamic surface variables), the second row shows predicted habitats using simulation 3 (static and dynamic surface and subsurface variables), and the third row

shows the difference in probabilities between simulations 2 and 3. The fourth row shows four example dynamic variables for the same day (Sea Surface Temperature,

Sea Surface Height, Bulk Buoyancy Frequency, and Isothermal Layer Depth). Species are indicated by a black silhouette: swordfish (first column), blue sharks (second

column), common thresher sharks (third column), and shortfin mako sharks (fourth column). Contours on the first and second row are at 0.6 and 0.2, contours on the

third row are at 0.1 and −0.1, and contours on the fourth row equate to the 25 and 75% quantiles.

predators, including the study species, spend much of their time
in surface waters despite foraging in waters below the mixed
layer (Table 1). The common thresher shark partial response
curve showed a unique response to ILD, which appears to be
related to a weak negative correlation between ILD and SST
(−0.54 Pearson correlation coefficient). As SST has a greater
relative influence on common thresher sharks than ILD, the
preference for colder SST values better describes occurrence,
which results in no strong pattern seen with ILD < 70m. This

disconnect between partial effect curves is typical, and while plot
interpretation can be challenging when variables are correlated,
these plots represent an effective way of visualizing the effects of
each variable (Elith et al., 2008). Given the response common
thresher sharks showed here, future work could explore the
utility of other subsurface variables in describing their habitat
suitability, including model-based upwelling indices (e.g., Jacox
et al., 2014) that would spatially align with their predominantly
coastal distribution.
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Integration of the Vertical Dimension in
SDMs
Integrating dynamic subsurface variables into marine SDMs
had a positive effect on describing the horizontal habitat
suitability of four pelagic species. The mechanism behind
this result is likely a combination of the main effect of ILD
and BBV within the model framework, as well as the co-
variation with other variables (Figure S2). This co-variation
occurs as a result of including multiple variables in the statistical
framework. While certain variables had a higher relative effect
than others, no single variable could perform as well as the
multi-variable models, or even perform at a standard required
for conservation planning (AUC > 0.75; Table S2) (Pearce
and Ferrier, 2000). There is a trade-off in the number of
variables to include in a SDM, where a simple model is easier
to interpret but may come at a cost of decreased predictive
performance, while a complex model is challenging to interpret
ecologically (and especially as response curves change) but
may have increased predictive performance (Friedman et al.,
2001). Furthermore, there is potential for overfitting to occur as
the number of variables included in SDMs increases, however
regularization methods advised for boosted regression trees
reduces the risk of overfitting (Elith et al., 2008). Future research
could build on our results by including additional species
and additional model frameworks (e.g., generalized linear and
additive models; machine learning). There is further scope to
explore subsurface variables in SDMs (e.g., oxygen) and we
acknowledge that the subsurface variables explored here (BBV
and ILD) may not be sufficient for all marine species. Typically,
environmental variables included in SDMs are best informed
from a priori expectations based on species ecology (Fourcade
et al., 2018).

Using ocean circulation models for SDM development can
maximize the use of catch data and allow model prediction
to be done on large spatiotemporal scales. However, not all
ocean circulation models are equal and care must be taken to
ensure outputs are appropriate for use. The dynamic surface
variables obtained from this ocean circulation model are a best-
case scenario of data availability, in that data from satellites and
quarterly in situ data surveys are incorporated (data assimilative)
but typical issues with satellite-derived information are avoided
(i.e., cloud cover, patchiness, resolution mismatch, temporal span
of products; Scales et al., 2017a). Ocean circulation models also
provide a consistent framework to access data across periods of
changing observational assets (i.e., different satellite eras). Output
from regional ocean models, and especially data-assimilative
models, is unfortunately limited to certain regions and time
periods such that its use will be precluded in some SDM
development. However, when data are available for the time
period and spatial domain of interest, the added benefits of using
ocean circulation data can be powerful (Becker et al., 2016; Scales
et al., 2017b).

Integrating dynamic subsurface variables improved the
explanatory power and predictive performance of SDMs for
highly migratory species. The benefits to model explanatory

power support the future use and inclusion of such variables,
where possible, to get the best ecological understanding of the
environmental drivers on species distributions. Improvements
to predictive performance, while significant, were not large
for a model that already incorporates many dynamic surface
variables. For an operational version of such a model (e.g.,
Hazen et al., 2018) the benefits of including subsurface variables
should be weighed against the resources needed to obtain
them and evaluate their contribution. However, more generally
there is added benefit in using ocean circulation models—
whether variables are vertical or horizontal, or both—in SDM
applications, as ocean circulation models: (i) eliminate data
gaps that are prevalent in satellite data and in situ sources;
(ii) provide continuity across periods of changing observational
assets; (iii) provide all variables at common spatial and temporal
resolutions; and (iv) can be configured to predict into the
future. Operational models require continuous collection and
collation of data products, a process that is greatly streamlined by
having a single source for ocean circulation model output rather
than multiple remotely sensed data providers. This improved
efficacy can support conservation planning, decision-making,
and management (Hobday et al., 2018; Stelzenmüller et al., 2018)
on near real-time (Maxwell et al., 2015), seasonal (Brodie et al.,
2017), and longer timescales (Almpanidou et al., 2016; Ban et al.,
2016).
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